

By Herbert C. Wendes

Testing and Balancing Energy Auditing Indoor Air Quality Diagnosis Load Calculations NEW! Technical Management

HUAC Procedures and Forms Manual Second Edition

This page intentionally left blank

HVAC Procedures and Forms Manual

Second Edition

by Herb Wendes, P.E.

THE FAIRMONT PRESS, INC. Lilburn, Georgia

MARCEL DEKKER, INC. New York and Basel

Library of Congress Cataloging-in-Publication Data

Wendes, Herbert.

HVAC procedures and forms manual/by Herb Wendes.--2nd ed.

p. cm.

Includes index.

ISBN 0-88173-387-3 (electronic version)

1. Heating--Estimates--Forms. 2. Ventilation--Estimates--Forms. 3. Air conditioning--Estimates--Forms. 4. Buildings--Mechanical equipment--Installation--Estimates. 5. Buildings--Energy conservation.

TH7335 .W4597 2001 697'0029'9--dc2l

2001040687

HVAC procedures and forms manual/Herb Wendes.

©2002 by The Fairmont Press. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Published by The Fairmont Press, Inc. 700 Indian Trail, Lilburn, GA 30047 tel: 770-925-9388; fax: 770-381-9865 http://www.fairmontpress.com

Distributed by Marcel Dekker, Inc. 270 Madison Avenue, New York, NY 10016 tel: 212-696-9000; fax: 212-685-4540 http://www.dekker.com

Printed in the United States of America

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

0-88173-387-3 (The Fairmont Press, Inc.) 0-8247-0923-3 (Marcel Dekker, Inc.)

While every effort is made to provide dependable information, the publisher, authors, and editors cannot be held responsible for any errors or omissions.

Contents

INTRODUCTION	ix
CHAPTER 1	
HVAC Testing and Balancing Procedures and Forms	i
Air Balance Test Reports	
General Procedure for Balancing	
Equipment Test Reports	
Air Balancing Procedure	
Testing and Balancing Report Cover	
Fan Test Report	
Outlet Air Balance Report	
HVAC Systems Recap Sheet	
Pitot Tube Traverse, Rectangular Duct	
Pitot Tube Traverse, Small Round Ducts	
Pitot Tube Traverse, Large Round Ducts	
Hydronic Balancing Procedures and Reports	
Hydronic Balancing Procedure	
Pump Test Report	
Water Balance Report, Pressure Differential	
Water Balance Report, Temperature Differential	
Chiller Test Reports	
CHAPTER 2 HVAC Energy Auditing Broadures and Forms	41
HVAC Energy Auditing Procedures and Forms	
Energy Audit Procedures and Forms	
In Donth Energy Audit Procedure	41
Readings Required for Thorough HVAC Audit of System	
Average Appuel Energy Performance in Bty's Per Square Feet	
Sample Audit and Forms	
Drawing of Suburban Office Building	
HVAC Energy Auditing Report Cover	
Building and System Description	
Flectrical Consumption History	
Fauinment Schedules	58
Electrical Consumption Graphs	
Fauinment Test Reports	
Electrical Loads Per System	
Electrical Loads Project Recap	
Heat Loss Calculation. Seasonal	
Cooling Load Calculation, Seasonal	
Cooming Louis Calculation, Ocuborial initiation	

Peak Heating, Cooling and CFM Per Area	74
Energy Cost and Btu Profiles	76
Residential Audits	
Energy Consumption History	
Outside Wall Energy Evaluation	
Ceiling and Roof Energy Evaluation	
Windows and Doors	
Cold Floor Energy Evaluation	

CHAPTER 3

Indoor Air Quality Procedures and Forms	
Problems	
Specific Causes of Indoor Pollution	
Testing, Setting and Controlling Outside Air	
Carbon Dioxide Levels	
Indoor Air Quality Instruments and Testing	
Humidity	
Particulate Contaminants	
Formulas	
Indoor Air Quality Report	
Building Ventilation and Pressure Report	

CHAPTER 4

Engineering Calculation Procedures and Fo	rms97
Heat Loss Calculation Form	
Cool Load Calculation Form	
Peak Heating/Cooling/CFM Per Area.	

CHAPTER 5

HVAC Cost Estimating Procedures and Forms	
Introduction	
Sheet Metal Estimating	
Requirements of a Good Sheet Metal Estimator	
Efficient Estimating Procedures	
Estimating Procedure Diagram	
Scope of Complete Sheet Metal Estimate	
General Estimating Forms for Both Sheet Metal and Piping	
Estimate Coversheet	
Job Description and Budget Costs	
Bid Checkoff Sheet	
Quotation Call List and Price Comparison	
Quantity Takeoff and Extension Sheet	
Estimate Summary Sheet	
Telephone Quotation	
Bid Recap Sheet	
Bidding Record	
0	

Calculating Labor Costs Per Hour	
Company Markup Calculation Sheet	
Duct Takeoff and Extension Sheets	
Per Piece Duct Takeoff Sheet	
Per Pound Duct Takeoff Sheet	
Piping Estimating	
Requirements of a Good Piping Estimator	
Piping Takeoff Sheet	
Computerized Estimating	

CHAPTER 6

Hitting Home Runs in Technical Management

Ir	troduction	
Fa	aced with A Multitude of Problems	
U	nderstand What Constitutes A Problem	
Ν	lultiplicity Thinking; Avoid Partial Views	
B	e Acutely Aware of the Principles and Procedures	
С	utline of the Principles and Procedures	
V	ibrations in High School Building, Sample Case History	
B	ecome thoroughly Familiar with the Problem	
E	kamine Possible Causes and Suspend Judgment until Verified	
E	stablish and Evaluate Objectives	
G	enerate Multiple Options and Hold Back on Final Choice	
Ir	formation and Planning Worksheet	
E	valuate Options, Compare against Objectives, Make Decision	
W	rite it Down	
APPENDIX	A—Blank Forms	
Α	. Full Size Blank Testing and Balancing Forms for Your Use	
	Testing and Balancing Report Cover	
	General Information Form	
	Fan Test Report	
	Outlet Air Balance Report	
	Air Systems Recap	
	Pitot Tube Traverse, Rectangular Duct Form	
	Pitot Tube Traverse, Small Round Ducts Form	
	Pitot Tube Traverse, Large Round Ducts Form	
	Pump Test Report	
	Water Balance Reports	
	Chiller Test Report	199
В	Energy Audit Forms for Your Use	
	Coversheet for Energy Auditing Report	
	Building and System Description	
	Electrical Consumption History Per Month	
	Fan Test Report	204
	Pump Test Report	

	Chiller Test Report		
	Electrical Loads per System	n	
	Electrical Loads Project Re	сар	
	Heat Loss Calculation	-	
	Cooling Load Calculation.		
	Peak Heating, Cooling and	CFM Per Area	
	Energy Consumption Histo	ory	
	Outside Wall Energy Evalu	lation	
	Ceiling and Roof Energy E	valuation	
	Windows and Doors		
	Cold Floor Energy Evaluat	ion	
	C. Indoor Air Quality Forms		
	Indoor Air Quality Report		
	Building Ventilation and P	ressure Report	
	D. Engineering Calculation F	orms for Your Use	
	Heat Loss Calculation		
	Cooling Load Calculation.		
	Peak Heating, Cooling and	CFM Per Area	
	E. HVAC Cost Estimating Fo	rms	
	HVAC Estimate Report Co	versheet	
	Job Description and Budge	t Costs	
	Bid Checkoff Sheet		
	Quotation Call List and Pr	ice Comparison	
	Quantity Takeoff and Exter	nsion Sheet	
	Summary Sheet		
	Telephone Quotation		
	Bid Recap and Markup Sh	eet	
	Bidding Record		
	Calculating Labor Costs Pe	er Hour	
	Company Markup Calcula	tion Sheet	
	Per Piece Duct Takeoff She	et	
	Per Pound Duct Takeoff Sł	neet	
	Piping Takeoff Sheets		
	F. Hitting Home Runs in Tech	hnical Management Forms	
	Problem Work Sheet	-	
	Cause Work Sheet		
	Objectives Work Sheet		
	Options Work Sheet		
	Information and Planning	Work Sheet	
APPEND	X B—Charts and Formulas		243
	Abbreviations and Symbols		
	Association Abbreviations		
	Air Flow and Pressure Formulas	5	
	Changing Fan CFMs and Drives	5	
	Air Heat Transfer Formulas		

Changes in State of Air Formulas	
Air Density Correction Factors	
Converting Velocity Pressure Into Feet Per Minute (Standard Air)	
Converting Velocity Pressure Into Feet Per Minute (Various Temperature)	
Hydronic Formulas	
Psychrometric Chart	
Motor Amp Draws, Efficiencies, Power Factors, Starter Sizes	
Conversion Factors	
Fuel Heating Values	
Steam Formulas	
Electrical Formulas	
Refrigeration Temperature/Pressure Chart	
Properties Of Saturated Steam	
INDEX	

This page intentionally left blank

Introduction to Second Edition Hitting Home Runs in Technical Management

This second edition of *HVAC Procedures and Forms* has been expanded to include a new section titled *Hitting Home Runs in Technical Management*.

The new chapter covers the management of problems, trouble shooting and decision making in the HVAC industry in a more effective, systematic, and thorough manner. Included are the principles and procedures of the home run process, an actual complete case history, and forms which complement the procedures and help guide you through the process.

The five other sections of the manual provide a quick reference and guide on procedures, charts and forms in some of the most critical areas of operations in the HVAC industry, *testing*, *balancing*, *energy auditing*, *indoor air quality*, *load calculations*, *and cost estimating*.

The manual is written for contractors, building engineers, and technicians, as well as for balancers, maintenance personnel, and servicemen. It is a valuable guide for managers and supervisors for planning, scheduling, controlling, monitoring, and resolving problems quickly and effectively in mechanical systems.

- The comprehensive procedural sections guide the manager or technician effectively through testing, trouble shooting, auditing, air quality, and problem solving operations.
- The forms are concise, comprehensive and optimally organized for easy gathering of data and for reference. They prompt the user for essential information needed in the different areas of work. They serve as a check-off list to insure completeness and effectiveness of operations.

The procedures and forms in this manual were created by the author over a period of twenty-five years. He personally applied the procedures and the forms successfully in the field and office. He tested, modified and developed them and proved them to be meaningful and accurate. Thousands of engineers, technicians, balancers, maintenance personnel and contractors have applied the procedures, used the forms, and provided positive feedback. They have been used in schools and for training guides.

Because it would take many years to develop valid, workable, analytical procedures and forms, and because this information is now compiled in a single reference—the user will save countless hours in performing the technical operations, and in assimilating and organizing the data, on virtually all types of mechanical systems and buildings.

Chapter 1 HUAC Testing and Balancing Procedures and Forms

AIR BALANCE TEST REPORTS

Test reports are an absolute necessity in balancing. They prevent chaos, errors and generally a big mess of indecipherable and incomplete paperwork.

Test reports enable the balancer to keep things organized, clear and neat. They show the procedure and guide the sequence of work. They act as a constant reminder of what information is needed.

They are excellent records to refer back to. The balancer can go back and can refer to the reports to see how the systems were, how they should be, and what is actually different. He can quickly rebalance a system. Reports can be used as the basis of redesign and/ or problem analysis.

Organized forms are easy to read, not only for the balancers, but for others such as the designers or building engineers. Most of all, forms ensure better, faster and more efficient balancing, and fewer call backs.

Types of **R**eports

There are a number of different types of test reports used in air balancing. The most widely used and critical ones are the *Fan Test Report* and the *Outlet Air Balance Report*. These provide the basis of essential data on the fan and the balance condition of the outlets.

The *Pitot Tube Traverse* sheet is more of a worksheet than a report that is distributed or kept for record purposes.

Larger, more complicated projects require *General Information Sheets* and *System Recaps* to tie everything together and keep track of the balancing progress.

Schematics of the systems, numbering the outlets, clearly showing the routing, etc. are frequently needed for larger systems—systems that are spread out, messy blueprints, and systems for which no blueprints are available.

PROCEDURE FOR PREPARING REPORTS

- 1. Gather the following information:
 - Blueprints
 - Specifications
 - Fan Submittal Drawings
 - Air Handling Unit Drawings
 - Grille Schedules
 - K Factor Data
- 2. Study the plans and specifications. Read the equipment schedules on the blueprints.

See what types of systems and equipment there are, how the ductwork is routed, where dampers are located, what the size and capacity of outlets are.

Read what the specification requirements are on balancing.

- What degree of accuracy is called for, +/-5%, +/-10% or something else?
- Do you have to balance in summer or winter?
- Should heating and cooling be on or off?
- Should the outside air damper be open or closed? What instruments and procedures are required?
- Is certified balancing required? Can the contractor balance or must it be an independent balancing company?
- Should the building be occupied or not?
- Are new filters required?
- Are temperature readings required?
- 3. Plan how the system can be best balanced and determine what instruments are to be used.
- 4. Fill out the general information sheet. Describe the types of systems with key descriptive terms such as low pressure, high pressure, variable air volume, single zone, roof top, split system, return plenum ceilings, etc.

Indicate the manufacturer of the grille, diffusers and terminal boxes. Describe the types required and furnished.

Checkoff the instruments to be used and indicate the models and last calibration dates.

Checkoff the status of completion of the building and systems.

GENERAL PROCEDURES FOR BALANCING

Low Pressure Constant Volume Systems

The most common type of HVAC system used in the United States is the low pressure constant volume supply system. There are hundreds of thousands of stores, supermarkets, restaurants, offices, factories and so on, which employ them. Possibly 60 or 70 million of the 88 million residences in the country are low pressure constant volume. Many of the systems in institutional buildings such as hospitals and schools are of this type.

There are three categories of low pressure constant volume systems, single zone, reheat and multi-zone. The most predominant of these is the single zone.

The low pressure constant volume system is defined as follows:

- 1. The total system *static pressure* doesn't exceed 2 or 2-1/2 inches water gauge.
- 2. Air velocities don't exceed between 2000 and 2400 fpm.
- 3. The systems are *constant air volume* and *variable temperature. To* control the temperatures in the spaces, the heating and cooling equipment is cycled on and off or modulated in order to vary air flow and space temperatures.

BASIC PRINCIPLES

- 1. Start at the *heart* of the system, which is at the fan, and make sure it is pumping correctly before balancing duct runs and outlets.
- 2. Make sure the system is clean before balancing, that all filters, coils, strainers, ductruns dampers, louvers etc. are clean and unclogged.
- 3. Make sure the system is *open before* balancing, that all dampers behind grilles and supply diffusers, manual balancing dampers and fire dampers are open and that the control air dampers are set in the correct positions.
- 4. Make sure the air distribution system is properly *sealed* and that no duct end caps are left off, no duct runs are unfinished and no outlets are not connected. Make sure that connections and seams are sealed if required.

- 5. Balance on *maximum air flow* mode whenever possible and with *wet cooling coils* or assimilated conditions for actual operating maintenance.
- 6. *Proportionate balance.* Use this systematic method of balancing based on proven physical laws of fluid flow. It insures that the least amount of *resistance is* being input into the system to achieve the required air balance. It is a method which requires the least amount of balancing time and is the most efficient available. And the biggest feature of proportionate balancing is that the fan flow can be increased or decreased after a system outlet balance, without losing the balance, thus avoiding having to rebalance the outlets.

The general procedure for testing and balancing low pressure constant air volume (CAV) systems is as follows:

Preliminaries

Study the plans, specifications and equipment drawings to become familiar with the systems. A determination must be made of the best method to balance the systems, and appropriate instruments must be selected and checked out.

Prepare test reports, study plans and specifications. The first stage in the testing and balancing procedure is the preparation of test reports. Equipment test report sheets must be completed for each system. Outlets must be listed on air balance sheets in the sequence of balancing together with their types, sizes, Ak factors if required, design air quantities and velocities.

Check that building and systems are complete and operational. After the reports are prepared, inspect the job site to see that the building and systems are architecturally, mechanically and electrically ready to be balanced and they are complete and functional.

Invariably, new buildings may be only half ready when balancing starts, and in fact, it is the balancer's quality control check that uncovers a multitude of missing or incorrect items. As the balancing technician inspects each system he must report the inadequacies, see that corrective action is taken and move onto the systems that are ready for balancing.

After you have determined which systems are truly complete choose the first one to balance and proceed with an in-depth equipment check out.

CHECK HEART OF SYSTEM FIRST

Start the actual testing and balancing process at the heart of HVAC systems, at the fan.

If the heart isn't working right, the rest of the body can't perform as it should. Just as a doctor checks your blood pressure and pulse rate, you must check the fan's pressure and rpm rate. The *motor* on the fan is the organ that *drives* the fan and its electrical characteristics must be checked out and it must be protected. Hence, the first phase in the testing and balancing process is to check five items at fan:

- 1. Motor amp draw and thermal overloads
- 2. Fan rpm
- 3. Fan suction and discharge pressures
- 4. Pressure drops across components
- 5. Total air flow at fan

Then after the heart of the system is checked, adjusted and running properly—and only then—should the *outlets* and *duct-runs* be read with instruments and balanced.

CHECK MOTOR AND STARTER

- 1. *Motor Nameplate*. Since the weakest link in the system is the motor, it is imperative that it be protected. Check the motor nameplate first for maximum amp load, voltage, phase, rpm, service factor and other data. Record and compare with the design requirements written on the equipment sheets. If there are discrepancies in the voltage, phase or rpm they must be reconciled.
- 2. *Thermal Overloads.* Go to the starter next and check that the thermal overloads are installed and that they are the correct size. In a 3-phase system there must be three overloads, one for each line. If they are not installed, do not test the system until they are!

The thermal overloads must also be the correct size and not exceed the motor nameplate amps. For example if the maximum nameplate amps are 12.0, the thermal overload must be rated for a maximum of 12 amps, plus or minus a few tenths. The correct size overload is normally on a chart on the inside of the starter cover. Locate the maximum amps in the column and read the size heater required next to it. Usually the heater number is stamped on the face of the heater itself and is visible when installed.

Inspect Fan Components

1. *Fan Wheel.* Inspect the fan wheel next. Is it the correct type and size? On centrifugals it could be one of four basic types, backward inclined, air foil, forward curve or paddle wheel.

Is the fan wheel installed correctly? Sometimes the factory installs a fan wheel backwards in a fan, or if the fan is knocked down and assembled on the job site it frequently will be installed backwards. Is the *gap and center line alignment* between the wheel and the inlet cone on centrifugal fans correct? This can cause internal fan cycling and major havoc on the fan performance, reducing air flow 30, 40 or 50%.

Check to see that the wheel *is securely fastened* to the shaft. Check that the bearings are greased properly if they are not the permanently lubricated type.

2. *Drives.* Inspect the drives. Is the belt *tension* correct? On multi-belted drives is the tension the same on each belt? If not, it could indicate that the belts are of different lengths and are not a matched set.

Is the *alignment* correct? Cockeyed belts wear out fast and do not efficiently transmit horsepower.

Make a rough mental calculation of the pulley diameter *ratio* and compare with the motor/fan rpm ratio. Catastrophes have occurred when new or remodeled systems were first turned on. Ducts and plenums have burst apart or collapsed due to incorrect pulley ratios.

 $\frac{\text{Fan Pulley Dia.}}{\text{Motor Pulley Dia.}} = \frac{\text{Design Motor rpm}}{\text{Design Fan rpm}}$

Example:

 $\frac{10" \text{ Dia.}}{5" \text{ Dia.}} = \frac{1800 \text{ rpm}}{900 \text{ rpm}} = 2$

Record pulley diameters, belt sizes, the true center distance from the motor shaft to the fan shaft and available motor movement back and forth.

3. *Bump* the fan to check the rotation of the wheel. Frequently motors are wired in reverse. To reverse the direction of a three-phase motor, switch two leads at the motor or starter. For single-phase starters check the motor wiring diagram. Bumping the fan simply means turn the fan on and off again quickly.

CHECK SYSTEM COMPONENTS

- 1. Inspect the *filters* to see that they are installed and clean. On new jobs, if they are a temporary construction set, replace with the permanent set. If a permanent set, make sure they are not excessively dirty or clogged.
- 2. *Cooling and heating coils.* Check the cooling and heating coils. In built up housings; are they properly blanked off all around the tops and bottoms and sides so air does not

bypass the coil? Are there large gaps where the piping connections protrude through the side of the housing? If so, seal properly

Check if the coils are clean. If the system must be balanced with the heating or cooling on, are the coils and control valves in proper operation? If balancing must be done in a cooling mode and the cooling system is not operable for whatever reason, portions of the coil face area can be blocked off with cardboard or polyethylene to assimilate a wet coil pressure drop.

3. Automatic Dampers. The next step in the system component checkout is to check and set the automatic dampers in their balancing positions. There are two approaches in settings of outside air, return air and exhaust control dampers.

The first approach, if there is a *separate* RA fan, is to set the outside air to 100 percent closed, and the exhaust dampers to 100 percent open. After balancing on 100 percent OA set the OA to minimum and spot check outlets and fan discharge flow.

If weather conditions prohibit 100% OA, set the OA to the minimum position and the return air in its maximum and then balance. This puts the maximum load on the supply fan that it will ever have to handle. If it works under this condition it will also work under any lesser load.

If there is no separate return air fan and the supply fan is handling both the supply and return, the maximum load on the fan is achieved when the OA is at minimum and return air is at maximum. Balance in this mode. Spot checking must be done in the maximum CIA and minimum RA positions.

If there are face and bypass *dampers by* a heating coil, the face damper should be 100 percent open and the bypass closed.

If there are automatically controlled *vortex dampers* on the intake of a centrifugal fan, as with medium and high pressure VAV systems, it should closed completely and then upon start-up opened slowly, to prevent possible bursting of ductwork.

4. *Outlet and ductwork dampers.* After the central equipment is set up, go through the spaces served by the system and shine a flashlight through all outlets to make sure that all the grille and ceiling diffuser dampers are 100 percent open before turning the system on.

Check that *splitter dampers* are positioned at roughly a 30 to 45 degree angle and that other *manual volume dampers* and fire *dampers* are 100 percent open.

5. *Thermostat settings.* On low pressure constant volume single zone systems (a) In winter leave the thermostat on its normal setting. (b) In summer if the cooling is in operation,

set stat to maximum cooling, usually 55 degrees, so that the coil is wetted and the system is balanced under its maximum load.

TAKE FAN READINGS

1. *Start-up.* After completing the inspection and set up of the equipment and dampers, *turn on the system* to be balanced, plus all other systems that serve the same area, and take start-up readings.

Upon start-up listen for bursting or collapsing ducts, a rubbing fan wheel, motor or bearing noises or rumbling or clanging of any type. Observe the operation of the automatic dampers. If something erratic is seen or heard, turn off the fan immediately, check out and rectify the problem before proceeding.

2. *Amp and Volt Reading.* Since a motor can be burned up so quickly, the first thing to do after starting the equipment is to check the amp draw, to make sure it is not exceeding maximum motor amps, and check the voltage to confirm it is in the correct range.

This is normally done with a volt-ammeter at the starter. The jaws are clamped around each wire, one at a time, and the amps read. Then the probes are used to read voltages across terminals.

If there is a big difference between the amps on the legs, or if the voltage deviates greatly from design or fluctuates, there may be electrical system problems which have to be resolved before you can proceed in testing the system.

3. *Rpm reading.* Immediately after the amp-volt reading, check the fan rpm to see that it is approximately as per the design. Use a tachometer.

If the rpm of the fan is grossly higher or lower than design check the following:

- a) Check the motor rpm to see if a wrong speed motor was installed.
- b) Check the pulley diameters to see if you have the correct diameter ratio.
- c) Check if the blueprints, fan drawings or test report sheets are in error, or if there was a change.

The drive belts may also simply be riding too high or low in variable pitch motor pulley. If the amp draw permits it, change the variable pitch sheave to get the fan at the correct rpm.

4. *Fan suction and discharge pressures.* Read the fan suction and discharge static pressures next and add them together for the total fan static pressure. For example, a typical

suction pressure may be 1 inch and the discharge .5 inches. This would be a total of 1.5 inches.

5. *Pressure drops across suction side components.* The pressure drops across the filters and coils should be taken next for possible flow problems analysis and future reference. They also serve as a check against the design engineer's calculations and equipment manufacturers' catalogue ratings.

The *pressure drops* across the filters, coils and control dampers can be taken with a magnehelic gauge with a 0- to 1-inch or 0- to 2-inch scale. Drill holes in the component housing on entering and leaving sides of components. Take individual static pressure readings at each point and subtract upstream from downstream readings for arriving at the drops.

6. *Total Air Flow.* Knowing three characteristics of the fan performance out of the five, the amp draw, rpm and fan static pressure, the fourth critical aspect is checked at this point.

Check the total air flow from the supply fan to see if you have approximately the correct amount to start off with, before balancing the outlets.

Exceptions to this procedure are where there are no duct sections for accurate total flow readings, and for small systems with few outlets, where it is easier and faster to read all the outlets and total them up than to take a Pitot traverse at the fan.

The most accurate method of taking a total air flow reading is with a *Pitot tube traverse in* a straight run of ductwork five to ten times the width of the duct. Readings must *not* be taken in or near fittings or after dampers, coils, and so on, because of the potential turbulent flow and unreliability of readings at these points. Enough points in a duct cross section must be read for a valid velocity average.

If a Pitot tube traverse cannot be taken in the main discharge duct due to fittings, equipment, lack of straight duct, inaccessibility, etc., traverse readings with an anemometer can be taken on the discharge side of a filter or coil. These readings usually are not very accurate, but they will provide a rough idea of the total cfm in order to determine if the fan is running all right and if balancing the outlets is feasible.

7. *Stratification Check.* Air stratification through coils, filters, louvers, dampers, etc. can cause coil freeze up, under or over heating or cooling, and great energy inefficiency. If the arrangement of the outside air flow and return air flow into the mixing plenum gives any indication that there might be poor mixing of the air resulting in temperature or velocity stratification, check out for stratification.

PROPORTIONATE BALANCE OUTLETS AND DUCT RUNS

After the equipment is found to be correct and the total cfm in the right range, the outlets and branch ducts can be balanced.

First walk through the various areas served by the system to see if there are any problems with temperatures, drafts, air noises, etc. Spot check some end, middle and starting outlets and duct runs to roughly determine the extent of imbalance. Then proceed with the balancing.

The most effective method of balancing is the "proportionate" method. This method results in the least amount of energy usage by the fan. In proportionate balancing, all outlets and branch ducts in the system, starting with those farthest from the fan, are brought to about the same percent of design, give or take 5 percent. The method of doing this will be covered in the following chapter.

Constant volume, single zone, low pressure supply systems and exhaust systems can be proportionately balanced. High pressure systems involve a slightly different procedure for the high pressure side of the system.

FINAL SETTINGS AND READINGS AT FAN

After the outlets and branch ducts are proportionately balanced (that is, they are all approximately at the same percent of design, whatever it may be, 85, 95, 100 or 115 percent), return to the fan and recheck the total cfm, amps and discharge static pressure.

If the total of the outlet cfm is ten percent or more higher or lower than design, the fan rpm should be increased or decreased to get as close to 100% of design as possible.

If the outlets were correctly proportionately balanced, their flows will all increase or decrease roughly the same percentage as the fan cfm. For example, if the fan is increased 12 percent the outlets will each do likewise. Or if the fan flow is decreased 15 percent the outlets will also decrease.

If the cfm *must be increased,* check the actual amps against the motor full rated amps to make sure they will not exceed the higher fan rpm and air flow. Check to see if there is any room on the variable pitch drive on the motor to alter the rpm.

Using *fan law number 1* calculate the *new rpm* needed to achieve the new cfm. Calculate also what the *new static pressure* and *break horsepower* are. Compare bhp with actual hp of motor. Determine if you need new belts or sheaves. Check *motor movement* forward and backward in regard to whether belts can be reused or not. If a new motor is indicated consider if you live with less cfm to retain existing motor.

After changing the cfm at the fan, spot check key outlets in each branch to verify they have increased or decreased proportionately.

Unsealed low pressure ductwork might leak from 5 to 15 percent of the air flow. The average is about 8 percent. The fan cfm, under these conditions of leakage will not match the total flow at the outlets and will generally run about 8 percent less.

Medium and high pressure ductwork which has been properly sealed and leak tested should not leak more than 1 percent. The fan and total outlet cfm should be relatively the same in these situations.

EQUIPMENT TEST REPORTS

Detailed test reports for each major piece of equipment in the building are very important in balancing.

These reports record the key performance figures such as:

- gpm
- cfm
- Amp draws
- Pressures
- Temperatures, etc.

They also record important names such as:

- Detailed description of the equipment
- Manufacturers—Model numbers
- Maximum amp draws on motors
- Service factors
- Settings of dampers and valves
- Pressure drops

Test reports are required on major equipment such as fans, pumps, chillers, condensers, boilers, etc.

Procedure for Testing and Balancing HVAC Systems

Figure 1-1. Procedure for Testing and Balancing an HVAC System.

TESTING AND BALANCING REPORT

	Date
Job	
Location	
Architect	Phone
Engineer	Phone
Testing and Balancing Contractor	
Address	
City	State Zip
Phone	_ Fax Number

Figure 1-2. Sample Filled Out Testing and Balancing Audit Report Cover Sheet

HVAC PLAN OF NORTH HIGH SCHOOL

Figure 1-3. Diagrammatic plan of North High School Used for Sample Forms which Follow.

GENERAL IN	FORMATION
Job North High School	Job No. <u>C-150</u> Date <u>Aug. 15, 1981</u>
Location	
TYPE SYSTEMS	
Low pressure single zone	Chilled water
Medium pressure VAV	Hot water
Air handling units	
Roof top units	·
Make up air units	ر
Toilet 'exhaust	
<u>Kitchen exhaust</u>	
Dust collector system	
5	
DIFFUSERS AND REGISTERS	
Manufacturer 10++1e and Dalley	
Types Kound diffusers fixed, PS	Linears 4000
Round dittusers adjustable, PA	
Registers, 1100	
TERMINAL UNITS Manufacturer Tuttle and Balley Types VAV boxes, pressure in pneumatic, normally close	dependent.
1 0	
INSTRUMENTS USED (Indicate Models)	~ -/
Velometer	Flow Hood
Anemometer	Thermal Anemometer
Manometers	Magnehelics
Volt-Ammeter	MTachometer
BUILDING AND SYSTEM COMPLETION CHECK OFF	LIST
Architectural: Walls Roof Floors Wir	ndows Proces Preilings
Electrical: Starters Soverload 🗆 Transf	Formers Tested Wiring
Controls: Control Motors Sclinkages	Compressors Stats Stubing Wiring
Piping: SCoils Salves Solping S	Pumps S Wiring
Sheet Metal: 🖬 Grilles 🖬 Fins 🖬 Drives 🕷	Air Handling Units 🗹 Filters 🖬 Wiring
Remarks	<u></u>

Figure 1-4. Sample Filled Out General Information for Testing and Balancing Form

FAN TEST REPORTS

Fan test reports make up one half of the critical work done in balancing. The fans are the heart of the system and must be running properly before duct runs and outlets are balanced.

- 1. Fill out data on fan, motor and starters from drawings.
- 2. Check *nameplate* information and make physical inspection for further data and enter.
- 3. Check starters and overload sizes.
- 4. Bump fan for correct rotation.
- 5. Finally, take electrical, rpm, pressure and flow *readings* and enter.

Fan cfm and the total cfm at the outlets might not match if there is ductwork leakage. Actual amps at motor must not exceed rated amps. Compare fan readings such as rpm, cfm and static pressure-to-fan *charts*.

	FA	N TEST	FREPORT				
Job North High	Scl	nool	Job No C-15	50 Date	Aug.	1, 1981	
Location				System	<u>, </u>	-2	
Equipment Location Mer	zan	ine Serves	LUnchroom Te	sted By	<u></u>	V	
Mir Handling Unit DR	oof Tor	o Unit □Fur	nace Supply Fan	Exha	ust Fan	☐Pkg Unit	
PLP MP HP Con	stant \	Volume 🗌 VA	\V				
FAN DAT	٨			MOTO	R		
Manufacturer Barr	u		Manufacturer	GE	Serial N	10.	
Model Size AF 1245	J DW	VDI	Frame No. 184	T Ty	pe Frame	🗆 T 🖬 V	
Type Fan ECentrigal	D R o d	of Exhaust	Service Factor	1.15	Rated	Actual	
	vane Axi	ALL Coll	HP, Nameplate		5	5	
Type Wheel Deackward In	ve DP	addle Wheel	BHP [HPnp x Aa x		3.53	3.84	
Wheel: Alignment OK DG	ap 🖬 Fai	stened MClean	Amps, L ₁ L ₂ L ₃		15.2	12.2	
Belts(2) B131 C to	C Dista	ance 52 "	Voltage, L ₁ L	7 L3	230V	220V	
Pulleys: Fan Dia. 10"	Mot.	Dia. 5"	RPM		1750	1750	
Motor Movement 2" ±	Belts		Phase		3	3] [
Bearings / DC	ut Off	Plate OK					,
<u></u>				STAR	TER		4
FAN PERFOR	MANCE		Manufacturer	GE	Mode	141R	
D	esign	Actual	Starter Size	0	Class		
Fan CFM 9	800	10,160/1047	Overload: Requ	uired S	ize CR I	5.4	
Outlet CFM Total 9	800	9.756/917	Acti	ual	CR	15.4	
Fan RRM	985	992	r				л
Fan S.P.	1/2"	1.6"	STAT	IC PRES	SURE DROP	S lotal	4
r			ן 	Upstream	Downstrea		$\langle \rangle$
CONDITI	ONS		Filter	<u>.</u> 2"	.4"	1.2"	W. (
Vortex Damper Position			Heat. Coil	.4	.6	- 2	-
Outside Air Damper Sett	ing 4	DOOCFM	Cool. Coil	. 6	1.0		+
Return Air Damper Setti	.ng 6	60 CHM	Fan Inlet				-
Filter Conditions C	ean		Fan Discharge			.0	4 1
Coil Conditions	ean)	Total Fa	an S.P.		1.0	1
Temperatures		1.70 0/1	1				
0A: 240% 40F	<u>DB</u>		4				
	DB		1				
Mixed Air:		WB RH	PROBLEMS:	г л е	Play	— 7.5. 9.5	
Discharge	DB		I Too little air		P High	[] 100 H0	à
Space:	 DB	מא טא	Air Noises	DF oment F	an Noises]Undersized	1 Equipment	ļ
Remarks			□ 0 0 ther				
Wendes Engineering and Contr	acting S	ervices			7/50	Form TAB 20	1

Figure 1-5. Sample Filled Out Fan Test Report Form

OUTLET AIR BALANCE REPORT

Air distribution systems must be planned, checked out and balanced in an organized manner. The outlet balance reports initiate and control this process.

List the area being served, the *number* of the outlet, *model*, *size* and *cfm* required. The Ak (effective area of flow through the outlet) and required velocity are not needed if a flow *hood* (which reads cfm directly) is being used.

If air velocities are being read with an Alnor Velometer, Ak areas have to be looked up in manufacturer's factor manual or determined by some other means and entered. Also, the required velocity and required cfm must be calculated from the Ak.

Notes on the right-hand side of the outlet air balance report refer to the branch ducts in the air distribution system, B1, B2, etc., and to the percentage of design of each branch after each pass in the proportionate balancing process.

struments Us	ed	<u>/elom</u>	neter	~		. <u>.</u>	_Teste	d by:_	<u>H</u>	W_		
ROOM		OP	ENING		REQU	IRED	PREI	.IMINA	RY	FJN	AL	
AREA SERVE	D No.	Model	Size	^ k	Vel	CFM	PERC	ESIG	of N	Vel	CFM	
Unchroor tudent Ar	ea.	P5	12"\$.66	909	600	10%	80/5	90/100		600) B
	2		12" 4	.66	909	600	90%	80/15	72/102		612	
	3		12" ¢	.66	909	600	95%	85	2711		582	10
	4	Ļ	12" \$.66	909	600	105%	90	100		600	/"`
	5	PA	14" \$.18	1025	800	80%	85/10	102		816) ₈ :
	6		14" 4	.18	1025	800	90%	25/10	98		784	100
	์ 1		14" \$.18	<u>1025</u>	800	105%	90	99		192	10
	8		14. 4	.18	1025	800	130%	101			808) ^m
	9	DF	2415	.65	1076	700	95%	105	100		672),
	10		2415	.65	1076	700	95%	105	110		700	\
	11		2415	.65	1076	700	125%	105	103		721	100
↓	12	. ↓	2415	.65	1076	700	125%	111	101		707	Į'''
eacher Ar	ea 13	Linear	- 6 Ft	=.65	156	500	80%	83 10	98		490	
	<u> 4</u>	Troffer	- 4 Ft	.15	666	100	90%	85/10	96		96	(^B
0° Defle	<u>ect. 15</u>	T51 Ro	9 12×12	ור.	563	400	1007	90	97		388	(97
1 40°Def	ect 16	TSIRe	12×12	.5า	201	400	130%	97			388)_
			To	tal	ງ	800	CFI	Λ		(1756	91
unchrm	RA I	TTOD	48824	6.8		3000				• • • •	3100	
	2	TIOL	48 4 24	68	441	3000					3060	
			To	fal	'-	6000	CFL	<u>η</u>			6160	
						10000		†'				
emarks			•••	······	.a	<u></u>						-
	· · ·		· · · · · ·				·· - ·					-

Figure 1-6. Sample Filled Out Outlet Air Balance Report Form

AIR SYSTEMS RECAP

The air system recap keeps critical fan and motor readings in a overall list for easy checks of multi-system projects and for keeping track of the status of work.

The critical fan and motor readings, cfm, rpm, S.P. and AMPS, plus the status of balancing, are recorded on this form.

Locatic	n									Bala	ncer		4	lw
SYSTEM	LOCATION OF EQUIPMENT	STATUS				СГМ			RPM		S.P. Inches		PS	
		1	2	3	Design	Actual	Percent of Design	Design	Act.	Des.	Act.	Des.	Act.	REMARKS
S-I	Classrm. Penth.	~	~	~	10,400	10.600	102%	1400	1410	4_	3.8	15.2	13.5	AHU
5-2	Lunchroom			V	9,800	9,756	99%	985	992	12	1.6	15.2	12.2	AHU
S-3	Egpt. Rm. 110	~	~		17,000	13.600	80%	900	880	2	1.8	28.0	21.7	AHU
<u> </u>	Library	~			17,000			900		2		28.0		AHU
5-5	Gym	~			22,000			895		21/2		42.0		АНО
R-1	Classrm. Penth.	~			8,000			897		1		9.6		Centrifugal
<u>R-2</u>	Library				13,000			180		11/2		15.2		Centrifugal
E-1	Toilets				3,200			740		1/2		2.0		Roof Exh Fan
E-2	Lunchroom	1	\checkmark		2,500	2.450	98%	151	150	1/2	1/2	2.0		Roof Exh Fan
E-3	Kitchen				5,400			189		1		6.8		Roof Exh Fan
E-4	Shop				10,000			1252		41/2	 	42.0		Industrial Exh Fan

Figure 1-7. Sample Filled Out Air Systems Recap Form

PITOT TUBE TRAVERSE RECTANGULAR DUCT

To determine the volume of air flow in a duct in terms of cfm, a multi-point Pitot tube traverse is taken inside the duct according to a certain procedure and the readings averaged for the overall cross sectional area of air flow.

- 1. Write in the width and depth of the duct being traversed.
- 2. The cross sectional area of duct is divided into equal areas and the center point of each is read and averaged by number of points.
- 3. Follow instructions on form to determine points of reading. Divide recommended spacing (from bottom chart) into duct width and split remainder in half for distance from sides of duct.
- 4. Do same for duct height.
- 5. Read velocities with Pitot tube in either inches of water gauge or directly in feet per minute depending on instrument being used.
- 6. Add up fpm readings and divide by number of points read for the average velocity in the duct.
- 7. Multiply times the cross sectional area in sq. ft. to determine cfm of flow.

Figure 1-8. Sample Filled Out Pitot Tube Traverse, Rectangular Duct Form

PITOT TUBE TRAVERSE SMALL ROUND DUCTS

Either six or ten horizontal and vertical points of reading are needed across a round duct depending on whether the duct size range is 3" to 10" or over 10."

The points are in the center of equal area concentric circles, and the locations from the side of the duct are predetermined and listed in the chart.

Read velocities in either inches of water gauge or directly in feet per minute depending on instrument used.

Add up fpm readings and divide by the number of readings, 6 or 10, for the average velocity in the duct and multiply times the cross sectional area in sq. ft. to determine cfm of flow.

Figure 1-9. Sample Filled Out Pitot Tube Traverse, Small Round Ducts Form

PITOT TUBE TRAVERSE LARGE ROUND DUCTS

It is very critical that Pitot tube traverse points for round ducts be accurately determined.

Traverses of round ducts follow the same principle as those of rectangular ducts in that readings are taken in the center of equal areas.

The difference with round ducts is that you are working with concentric rings of equal area and the rings are narrower on the periphery of the duct and wider towards the center. They are not as easily visualized or calculated as with rectangular ducts, and a chart is needed to establish the distance the Pitot tube is inserted into the duct for each reading.

Both horizontal and vertical traverses are required.

As in the example of the 28-inch-diameter duct, the first reading is 3/4," the second

21/4" and the last point is 271/4" in which is 3/4" from the opposite side of the duct.

Jo	F ⊳No	nti Phre		TL	JBE n S	E T cha	RA	VE	RS	E, L	ARGE	ROU	ND DU	JCTS	5 81			
Lo	cati	on									VAV. M	Ps	vstem J	S-1				
Lo	Location of Duct Penthoyse Served										Duct Temperature ^G SP							
D	Duct Diameter 28" Required CFM										0,400 Required FPM 2.432							
D	Duct Area 4,267 Sq Ft Actual CFM										0.195	Actu	al FPM					
Pe	Percent of Design:Actual CFM (<u>,</u>	= 98					
		Ŧ	041/51		0.1.117	Re	quir	ed CI	řΜ	- (10,400)		io				
	TOATEAGE FOINT EALOUI												READ	INGS				
	<u> </u>										POINTS	At S	Startup	Fin	nal			
		4	-+1		,							V.P.	FPH	V.P.	FPH			
		+	┥┟	\vdash	•10						1	.22	1819					
			M		48		\backslash				2	.30	2193					
		F			4 6		```				3	.40	2523					
	I	1		l l							4	.55	2970					
			234	5			789	10			5	.41	2563					
											6	.36	2403					
		•		•	• 5	<u>i</u>		X			7	.36	2403					
				•	• 4		ľ				8	.37	2436					
	-	•			<u> </u>	>	4				9	.36	2403					
	ł	.		-	Ŧ			Ì			10	.28	2119					
	ł	4									1	.28	2119					
	1							•			2	.22	1811					
Dis	tanc near	e fro	om si 1/8+1	lde o	f duo b for	t to) poi	nt o	frea	ading	3	.36	2403					
[ouci	1		1,00			. 10	poin		avers	se.	4	.30	2193					
D1A.	3/8	, "	1.3/4	2.3/4	4.178	7.7/8	9.1.4	10.1.4		10	5	.37	2436					
13	3/0	1	1.7/8	2.7/0	4.1/2	8.1/2	10 1/8	10.1/4	17	12.5/8	6	.40	2523					
15	3/8	1.1/4	2.1/4	3-3/8	5.1.1	97.0	11 5-8	12 3.4	13.3.4	14-578	7	.55	2970					
10	3/0	3-374	2.3/8	3-5/0	5.1/2	10-1-/2	17-3-/8 13-1-8	13-5/8	14 3/4	15-5/8	8	.41	2563					
	1/2	1.1.7	2-5/8	4.1/8	A 1 'A	11 7/8	13 / 1	15 1/8	16.1-7	17.1/2	9	.36	2403		1			
20	1/2	1-5/8	2.7/8	4.1/2	6 7/8	13.1/8	15 1.1	17.1.4	18.3/0	19.1/2	10	36	2403					
74	5/0	1.3/4	3.1/4	9.1/2	81/4	14-1/7	17	18-3/4	20.174	21-3/8	Total FPM		47.784	X A	L			
76	5/8	2-1/8	3-324	5.7/8	8.7.8	37.1.8	201.0	22 1 4	23.2.8	25.3/1	Divided by	y 20 =	2389	$ \setminus / $				
30	3/4	2.1/2	4.1/6	6-3/4	10.174	19.2/4	23.1 4	25.5/0	21.1/2	29.1/4	Times Duc	t Area	4267	IĂŤ				
32	7/0	2-8/0	4.5/8	7.174	11-5/8	21 22.3/8	26.374	27-3/8	29.378	31-1/8	= Total C	FM	10,195	$V \setminus h$				
30	1	3	5.1/4	8.1/8	12-3/8	23-5/8	27.7.8	30 3/4	13	.15	<u> </u>			·¥_	<u></u>			
40	1	3.174	6.7/8	•	13 5/8	26.3-8	31	34.1/8	34 3/4									
42	1.1/8	3-5/8	8-1/8 8-3/8	\$-1/2	14-3/8 15	27-5/8	32-1-/2	35 7/8	38-5/8 40-3/8	40.378								
40	1.1/4	3-3/4	6-3/4	10.3/8	15-3/4	30.1/4	35-5/8	39.1/4	42-174	44 3/4								
Ven	des En	gineer	ing a	nd Con	tracti	ng Sei	vices	_ •••		46 3/4				Form	тлв 204ь			

Figure 1-10. Sample Filled Out Pitot Tube Traverse, Large Round Ducts Form

HYDRONIC BALANCE TEST REPORTS

The necessity of working with test report forms in hydronic balancing is just as great as it is in air balancing. Good organization, an outline of information needed, a guide to the sequence of work, readability, and good records are all equally required.

Also flow diagrams are generally required because of the frequent difficulty of following piping systems on blueprints when balancing.

PROCEDURE FOR PREPARING REPORTS

- 1. Gather required information:
 - Blueprints
 - Shop Drawings
 - Specifications
 - Submittals on:
 - Pumps
 - Chillers
 - HVAC Units
 - Coils
 - Valves
 - Cooling Towers
- 2. *Study plans and specifications* to become familiar with the types of systems and equipment. Study the routing of the piping and note valve and coil locations. Determine what specifications call for in the way of balancing.
- 3. Plan the *method* of balancing and select the *instruments* to be used.
- 4. Prepare flow *diagram* if there is none available. Note the central equipment, terminals, piping, diameters, valves, etc.
- 5. Fill out *pump test report*. Fill in standard information in heading.

Enter pump data, manufacturer, model, size, type and impeller size.

Enter design performance figures, gpm, rpm and full and no flow heads. The suction and discharge pressure readings at full and no flow will be filled in at the job site.

Fill in the motor data, manufacturer, serial number, mounting frame number, type of internal winding frame, service factor and rated hp, bhp, voltage, rpm and phase. The

rated amps will be gotten from the nameplate at the job site as well as from the actual readings.

Enter starter data, manufacturer, model, size and class. The required overload size will be gotten from the inside of the cover on the starter and from the actual overload installed, by inspection.

6. Fill out the flow or *pressure drop water balance report*. List primary and secondary circuits in groups and in sequence. List valves and terminals in the sequence they occur starting at the pump, along with identification and location if needed. Indicate the size. Enter the required cfm and the differential pressure reading required for the particular flow measuring device being used or from the manufacturer's published pressure drop across the item at design flow. List bypasses.

When proportionately balancing terminals, list percents of design in preliminary readings and gpm only for the final.

- 7. Fill out *temperature water balance report* for systems without flow measuring stations at terminals, which are generally reheat coils, induction units and baseboard radiation units. List the coil identification and room number in sequence, from the pump out; list primary circuits and secondary circuits as separate groups. Indicate sizes, design entering and leaving water temperature, and entering and leaving air temperatures.
- 8. If there are chillers fill out a *chiller test report*. Start with standard heating, then the basic compressor data, manufacturer, model, size, type, capacity, refrigerant, pounds and serial number.

The Freon pressures and temperatures on the compressor, evaporator and condenser are normally checked out by the manufacturer in the start-up and are not generally part of the water balance.

Fill in design water pressures, temperatures and flows on the *evaporator* and *condenser*.

Fill in design electrical data, M kW, voltage, phase, etc., on the compressor and starter.

The conditions at test time will be filled in at the job site—refrigerant and oil levels, water control settings, temperature and pressure cutouts and purge operation.

9. If there are *air cooled condensers and compressors* fill out the appropriate report. Fill in head data, then compressor data, manufacturer, model, size, type, capacity, refrigerant, pounds and serial number. Fill in design pressures and temperatures on the suction and discharge side of compressor. Enter compressor motor and starter electrical data.

Fill in condenser design temperatures and pressures for liquid line and air. Indicate condenser fan hp, amps and volts.

PUMP TEST REPORT

- 1. Fill out the heading on the form.
- 2. Fill out data on pump, motor and starter from drawings.
- 3. Enter design performance figures, gpm, rpm and full and no flow heads. The suction and discharge pressure readings at full and no flow will be filled in at the job site.
- 4. Check motor and pump *nameplates* and make physical inspection for further data and enter.
- 5. Check starter and overload sizes.
- 6. Bump pump for correct rotation.
- 7. Take electrical readings.
- 8. Finally, take discharge and static head pressure readings with pump off, then running with no flow, to establish impeller diameter, and then at full flow. Suction pressure is subtracted from discharge for total pressure.

Figure 1-12. Sample Filled Out Pump Test Report Form

WATER BALANCE REPORT PRESSURE DIFFERENTIAL

This water balance report is used for readings with fluid flow measuring devices such as differential Pitot tubes, circuit setters, venturis, etc.

The pressure drop across the flow measuring device is measured and correlated to a factory established curve furnished with the measuring device to determine the gpm flow.

The correct units, PSL feet or inches must be used to correlate to factory curve.

Percent of design is shown on the sample report in preliminary readings in the proportionate method of balancing.

Fill out the flow or *pressure drop water balance report*. List primary and secondary circuits in groups and in sequence.

List valves and terminals in the sequence they occur starting at the pump, along with identification and location if needed. Indicate the size. Enter the required cfm and the differential pressure reading required for the particular flow measuring device being used or from the manufacturer's published pressure drop across the item at design flow. List bypasses.

When proportionately balancing terminals, list percents of design in preliminary readings and gpm only for the final.

WATER BALANCE REPORT WATER BALANCE REPORT															
Location Pen	Location Penthouse System SI thru S-S														
instrument Used Annubars Tested by: <u>HW</u>															
△ F: Inches water reading on Annubar															
TAG SIZE REQUIRED BY PASS PRELIMINARY READINGS													NAL		
NO.	SIZE	∆p¹	ΔP GPM ΔP GPM ΔP % ΔP % ΔP %										GPM		
Total Flow Station	6"ф	10"	0" 480 99% 94%										454		
5-1	<u>21/2"</u> \$	<u>8.4</u> *	12				120		957.		93		67		
5-2	<u>2%" </u>	6"	6" 60 105 90 97 58												
<u> </u>	3"¢	8"	8" 108 90 83 94 101												
<u>S-4</u>	3" ф	8"	108		83 79 95										
<u>S-5</u>	31/2" ф	<u>6"</u>	132				73		<u> </u>		95		125		
Tot	al		480										454		
			-												
	•														
 △P: Can rep 	 present	flow	static	n di	 fferen	tial	or pro	ssur	e drop	acro	ss ite		<u> </u>		
Hendes Engineering a	and Contra	ting	Services								7/80	Form	TAB 211		

Figure 1-13. Sample Filled Out Water Balance, Pressure Report Form

WATER BALANCE REPORT THERMAL DIFFERENTIAL

If there is no flow measuring device installed in the systems to measure the flow through a heating or cooling coil, the flow can be approximated indirectly with a thermal method of measurement.

The air entering and leaving temperatures, air flow and water entering and leaving temperatures are measured.

The Btuh of heat transfer is then calculated from the measured air temperatures and cfm. This Btuh is then plugged into the gpm formula along with the fluid temperatures in and out and the gpm is calculated.

Fill out *temperature water balance report* for systems without flow measuring stations at terminals, which are generally reheat coils, induction units and baseboard radiation units. List the coil identification and room number in sequence, from the pump out; list primary circuits and secondary circuits as separate groups. Indicate sizes, design entering and leaving water temperature, and entering and leaving air temperatures.

.ь <u> </u>	<u>EA R.</u>	S		<u> </u>				Job	Νο. <u>ζ</u>	- 120	2 Date	5-17	<u>7 - 88</u>
ecation	Used	.700								 Te	Syst	em <u> </u>	z : W
											seed oj		
COIL			DESI	GN			RE	ADIN	IGS		CALCULATED		
	GPM	CEM	EWT	LW'I	ΕΛΤ	LAT	EWT	LWT	ЕЛТ	LAT	CFM	BTUII	GPM
5-1	36	9,400	45	55	75	57	43	55	74	57	9200	206	34
5-2	34	8,700	45	55	75	57	45	54	75	59	8500	209	32
5-3	50	12,000	45	55	75	57	44	55	73	58	12,100	252	48
									<u> </u>				
	.			· ·					—				
													

Figure 1-14. Sample Filled Out Water Balance, Thermal Report Form

CHILLER TEST REPORTS

- 1. It is vital that the chiller have the correct capacity and be performing as required and produce the proper temperature drop for the chilled water system.
- 2. Fill out chiller (compressor and condenser), motor and starter descriptive *data* and ratings from equipment drawings and/or blueprints.
- 3. Check compressor, condenser and motor *nameplates;* make physical inspection for further data and enter.
- 4. Check refrigerant oil levels.
- 5. Check starters and overload sizes.

Take electrical readings, chilled and condenser water pressure, temperature and flow readings, and refrigerant pressure and temperature readings.

The Freon pressures and temperatures on the compressor, *evaporator* and *condenser* are normally checked out by the manufacturer in the start-up and are not generally part of the water balance.

Fill in design water pressures, temperatures and flows on the evaporator and condenser.

Fill in design electrical data, hp, kW, voltage, phase, etc., on the compressor and starter.

The conditions at test time will be filled in at the job site; refrigerant and oil levels, water control settings, temperature and pressure cutouts and purge operation.

North Uich	CHIL	LER T	ES	T REPORT	Δ.,	- 15 1901						
JOB IVOITH HIGH	<u>JC100</u>	۱		Job No. C-13C	Date HU	<u>g. 13, 1781</u>						
Location Maal	- amiant	0m	D	U.C. D.B.C	System	111./						
Equipment Location MCC	nanicai	<u>MII</u> Serve	es D	<u>1095. M, D, C</u> Te	ested by:	nw						
COMPRESSO	R DATA			COMPRES	SOR MOTOR							
Hanufacturer Westin	<u>ighous</u>	e		ManufacturerWestingh. Serial No.								
Model/Size PE063JA	2/20V/F	A2/HO2		Frame No. Type Frame DT D								
Type Package Cer	itrifug	al		Svc. Factor: 1.15	Rated	Actual						
Capacity 200	tons @	180 GPM		HP, Nameplate	200							
Refrigerant 12	Pound s	210		$BHP [HPnp \times \frac{Aa}{Ar} \times \frac{Ya}{Yr}]$								
KW 152 KW Pe	r Ton	16		Amps, L ₁ L ₂ L ₃	234							
Serial No. WH 259	100			Voltage, L ₁ L ₂ L ₃	460							
				RPM	1800							
			'. [Phase	3							
COMPRESSOR	Design	Actual										
Suction Pressure				ST	ARTER							
Suction Temp.				ManufacturerWesti	ngh! Model							
Discharge Press.			[Size 5 C	lass NEM	AI						
Discharge Temp.				Overload: Required	Size : SR	240						
Oil Temp/Press.	1			Actual:								
EVAPORATOR	Design	Actual		CONDENSER	Design	n Actual						
Refrig. Pressure	370319			Liquid Line Pressu	re							
Refrig. Temp.	HOF			Liquid Line Temp.								
Ent. Water Pressure				Ent. Water Press.								
Lvg. Water Pressure				Lvg. Water Press.								
Ent. Water Temp.	54F			Ent. Water Temp.	85 F	-						
Lvg. Water Temp.	44F			Lvg. Water Temp.	95F							
Flow GPM				Flow GPM								
				_		Yanglu Hauge						
CONDITI	ONS			Volts x√3 WH	J x ^{Avg} x Anps	of Operation						
Refrigerant Level 🗸	_		ī	'er Year	1000							
Oil Level	<u> </u>		l	KW's =		7						
Percent Cylinders Unlo	oaded			Remarks								
Chilled Wat. Control S	Setting			Purge Operation (Checked							
Condenser Wat. Control	Setting			Crankcase Heater	Checked							
Low Wat. Cutout Temp.	Setting											
Low Pressure Cutout Se	etting											
High Pressure Cutout S	Setting			<u> </u>								
Mendes Engineering and Contra	octing Servi	c e s			7/80	Form TAB 214						

Figure 1-15. Sample Filled Chiller Test Report Form

This page intentionally left blank

Chapter 2 HUAC Energy Auditing Procedures and Forms

The purpose of an energy audit is to determine the energy consumption and costs of the overall building and of its specific components, the structure, systems and equipment. It is to generate *energy improvement* options, to project *energy savings*, to estimate the *costs* of energy improvements, calculate *paybacks*, and on this basis, evaluate the various options.

A good audit is diagnostic in nature, develops a valid prognosis of the causes of energy wastes, and leads to scientifically established remedies.

Well designed HVAC auditing forms are indispensable to these ends.

HUAC ENERGY AUDITING PROCEDURES

There are two basic phases or types of audits, short walk through audits and in-depth detailed audits, of either the entire building or of only selected parts of a building.

PHASE ONE: WALK THROUGH ENERGY AUDIT PROCEDURE

- 1. Make an initial walk through inspection to become *familiar* with the building, systems, equipment, maintenance, operation status, etc.
- 2. Study the *plans* and specifications and become familiar with the building, systems, capacities, equipment, etc.
- 3. Talk briefly with the building operating personnel, owner, occupants, etc. about HVAC systems, comfort, problems, etc.
- 4. Examine the overall building *energy consumption history* from the owner if available. If not, get complete energy consumption history on gas, oil, electricity, etc., from utility companies and fuel suppliers.

Compare the *Btu consumption per sq. ft.* per year with similar buildings and determine the degree of variance.

- 5. List *maintenance*, cleaning, adjustment, repairs and *balancing* needed to this point. Determine what maintenance and repairs must be done before the detailed audit can be performed.
- 6. Take some spot test readings if needed.
- 7. If a more *extensive audit is* needed, determine what test readings, inspections, analyses, calculations, etc. are required and estimate the time and costs involved.
- 8. Fill out Building and Systems Description report.
- 9. Write a list of existing energy *problems*.
- 10. List obvious and *potential energy savings* improvements. Further develop the most promising energy improvements.
- 11. If the walk through audit is sufficient, calculate energy savings for the various energy improvements, estimate retrofit costs and calculate paybacks.
- 12. *Select* with owner which energy improvements to proceed with and assign priorities. Properly engineer retrofit work and proceed.

PHASE TWO: IN DEPTH HUAC ENERGY AUDIT PROCEDURE

Field Surveys

- 1. Make thorough *inspection* of building systems and equipment and become thoroughly familiar with them. Check out operations, performance, maintenance, malfunctions, comfort, problems, etc.
- 2. Check nameplate data on equipment.
- 3. Conduct in-depth *interviews* with *building personnel*. Review maintenance, scheduling, performance, comfort and problems of building, equipment and systems.
- 4. Become familiar with actual *hours of operation* of systems and equipment, and the hours of *occupancy* by personnel.

Energy History

5. Study and analyze a 3-year history of the building's electrical and fuel energy con-

sumption. Compare with building consumption indexes of similar buildings.

Field Tests

6. Take *test readings* of actual flows, temperatures, pressures, rpm's, amps, volts, etc., at HVAC equipment.

Check pressure drops across filters, coils, strainers, etc. Check outside air flows at minimum and maximum.

Monitor readings over a period of time with a recording instrument where required.

Check lighting levels.

Seasonal and Peak Energy Calculations

- 7. Determine the actual *seasonal and peak energy consumption* and efficiencies of specific systems and equipment, etc. based on tests and other data.
- 8. Calculate the peak and seasonal *heating, cooling and cfm loads* actually required to meet current conditions for the overall building and various areas of the building. *Compare* with the design and existing capacities.

Evaluation of Energy Improvements

- 9. List all *problems* with the building, systems and equipment.
- 10. Generate *energy improvements* and develop those with the most potential. Write a list of improvements.
- 11. Calculate the potential *energy savings* in terms of Btu's and kWh's, and in costs.
- 12. Estimate costs of retrofit work.
- 13. Calculate paybacks and returns on investment.

Review and Decisions

14. Review with owner or his representatives:ProblemsCosts of Improvements

Energy Improvement Options Payback Return on Investment Potential Savings

Consider a *change* only on one portion of the recommended energy improvements to test and validate the savings and to observe the effects.

15. *Select* with the owner which energy improvements to proceed with and assign priorities.

Engineering and Construction

- 16. *Properly engineer* the owner retrofit work, prepare drawings and write specifications.
- 17. Obtain quotations, review contracts and *proceed* with the *retrofit work*.
- 18. *Monitor* units of energy and cost savings after put into operation. Make adjustments and *modifications* as required.

IN DEPTH ENERGY AUDIT PROCEDURE

Figure 2-1. In-depth HVAC Audit Procedure Diagram

READINGS REQUIRED FOR THOROUGH HUAC AUDIT OF SYSTEM

Each HVAC system is somewhat unique and its particular characteristics can only be identified by *inspection and measurement*. Information required to understand the present operation of a system and to provide a basis for deciding which modifications are likely to prove beneficial is tabulated below.

ELECTRICAL READINGS	(Amps, Volts, Power Factors, kW) Fans Pumps Compressors Condensers Chillers Lights Owners Operating Equipment
AIR FLOW RATES	Total supply air from fan Total return air to fan Total outdoor air Trunk ducts Terminal units Air cooled condenser
AIR PRESSURE READINGS	Suction and discharge of fans Drops across coils, filters, etc.
WATER FLOW RATES	From pumps Through boilers Through chillers Cooling towers Heat exchangers Coils and terminal units

WATER PRESSURE READINGS	Suction and discharge of pumps Drops across strainers, coils etc. Drops across boilers, chillers, condensers
TEMPERATURES, AIR	Outdoor air db and wb Return air db and wb Mixed air entering coils, db and wb Supply air leaving coils, db and wb Hot deck Cold deck Air at terminals Conditioned areas db and wb
TEMPERATURES, WATER	Boiler supply and return Chiller supply and return Condenser supply and return Coil supply and return Heat exchanger supply and return
REFRIGERANT TEMPERATURES	Hot gas line
OVERALL BUILDING ENERGY READINGS	Suction line At gas meter with all heating on At electric meter with only lights on At electric meter with HVAC units on At electric meter with refrigeration on

Energy conservation must be approached in a systematic manner rather than considering individual items *out of context*. Systems do *not operate in isolation* but depend on and react with other systems. It is important to recognize this interaction of systems as modifications to one will cause a reaction in another which may be either beneficial or counterproductive.

AVERAGE ANNUAL ENERGY PERFORMANCE IN BTU'S PER SQUARE FEET

Heating and Cooling Degree Day Region

Building Type	National	1	2	3	4	5	6	7
Office	84,000	85,000	76,000	65,000	61,000	51,000	50,000	64,000
Elementary	85,000	114,000	70,000	68,000	70,000	53,000	48,000	57,000
Secondary	52,000	77,000	65,000	55,000	51,000	37,000	41,000	34,000
College/Univ.	65,000	67,000	70,000	46,000	59,000			83,000
Hospital	190,000		209,000	171,000	227,000	207,000		197,000
Clinic	69,000	84,000	72,000	71,000	65,000	61,000	59,000	59,000
Assembly	61,000	58,000	76,000	68,000	51,000	44,000	68,000	57,000
Restaurant	159,000	162,000	178,000	186,000	144,000	123,000	137,000	137,000
Mercantile	84,000	99,000	98,000	86,000	81,000	67,000	83,000	80,000
Warehouse	65,000	75,000	82,000	65,000	50,000	38,000	37,000	39,000
Residential	95,000	99,000	84,000	94,000	125,000	90,000	93,000	106,000
Non-Housekeeping								
High Rise Apt.	49,000	53,000	53,000	52,000	53,000	84,000	20,000	

February 1978, HUD-PDR-290

SAMPLE AUDIT AND FORMS

SAMPLE HUAC ENERGY AUDIT OF A SUBURBAN OFFICE BUILDING

This 90,000-sq.-ft suburban office building was built around 1967 before the energy crisis occurred and it incorporates in its design and operation the great energy waste of that era. Overall, the FWAC, electrical and plumbing systems in the building consumed 276,000 *Btu per sq. ft.* per year for a total consumption of 24.9 *bill Btu* for 1994. The energy costs were \$3.80 *per sq. ft.* and totaled \$339,800 for the year.

The *targeted* energy reduction is 50 percent, reducing the Btu per sq. ft. from 276,000 to 138,000 Btu per sq. ft. with savings of about \$1.90 per sq. ft, or \$171,000 per year.

PROBLEMS WITH EXISTING HUAC SYSTEMS AND BUILDINGS

- 1. The building has two energy-wasting HVAC systems which simultaneously heat and cool, an interior high pressure *terminal reheat* system and a high pressure perimeter *induction system* with about one third primary air taken from the outside.
- 2. The 310-ton *chiller*, 6,000,000 Btuh boiler and the hot- and chilled-water pumps must run year round because of the terminal reheat system, wasting a great deal of energy.
- 3. The *computer room* operates 24 hours a day, weekdays, with a constant cooling load demand forcing the chiller to run year round and sporadically at nights.
- 4. The *chiller* and *boiler* are *oversized;* they cycle and run at inefficient levels.
- 5. *Excessive minimum outside air is* brought into the building. The settings of the dampers are off and they leak.
- 6. The *lighting levels* are excessive.
- 7. Thermostats are set too high or low in the winter and too low in the summer.
- 8. The oil-fired *boiler* is inefficient, scaly, with a poor combustion efficiency of 60 percent.
- 9. *Maintenance* is poor. Filters, coils and strainers are generally dirty. Many control valves, automatic dampers and thermostats are out of calibration, malfunctioning or miss-set.
- 10. Systems are out of balance.
- 11. *Fans* are oversized for load, pumping out more air than required, running on demand 24 hours a day year round.
- 12. *Pumps* are oversized for load, pumping out more gpm's than required, running on demand 24 hours a day year round.
- 13. Starting and stopping times of HVAC equipment not optimized.
- 14. Paying higher *demand* rates than need be.
- 15. Power factors: on underload motors not controlled.

SUBURBAN OFFICE BUILDING 90,000 Sq Ft, 1 Story

Figure 2-3. Suburban Office Building HVAC Diagram

HVAC ENERGY AUDITING REPORT

	Date
Job	
Location	
Architect	Phone
Engineer	Phone
Auditing Contractor	
Address	
City	State Zip
Phone	Fax Number

Figure 2-4 Cover Sheet for Energy Auditing Report

BUILDING AND SYSTEM DESCRIPTION FORMS

The Building and System Description information sheets are extremely important forms to be thoroughly filled out for a complete, effective and worthwhile energy audit to be made, and for a worthwhile energy conservation program to be brought about for the building.

The information entered in this initial form is very critical. It involves a thorough study of the original plans and specifications on the building, a preliminary job site survey, and gathering and evaluating energy utility bills and consumption for the building. The areas of coverage for the forms is as follows:

- 1. The basic geographical data at the start, as well as the name of the project.
- 2. The description of the building such as size, occupants, type spaces etc.
- 3. More specific construction details as to windows, walls, floors, roof and so on.
- 4. Hours of occupancy.
- 5. Heating and cooling system description.
- 6. Actual existing annual energy consumption of the building for heating, cooling, electrical power and lighting, for evaluation and comparison later.
- 7. The original environmental design conditions of heating, cooling and air flows.
- 8. Specifications on original or actual lighting levels.
- 9. Type of electrical service.
- 10. Connected electrical loads in kW's.

	BUILDING AND SYSTEM DESCRIPTION
N arr	e Suburban Office Building
Loc	ation
Lat	itude <u>41⁰N</u> Elevation <u>658 Ft</u> When Built <u>1967</u>
A.	CATEGORY OF STRUCTURE
	Office Building
0	
0.	Area So Et: 90.000 Number of Eloors: 1
	Volume Cu Et: 1.260.000
	Number of Occupants: 400 Sg Et/Person: 225
	Types of Areas: Offices, computer room, kitchen, dining room,
	employee lounges, storage, mechanical room
с.	
	Glass: Single pane, clear U=1.13, no shading, no drapes or
	blinds, sealed, aluminum frame
	Exterior Walls: 8" brick and block, lathe and plaster, R-6,
	U_factor .167
	Roof and Ceilings: Built up tar and gravel on 2" rigid insulation
	& metal deck, suspended accoustical ceiling.
	Floors: Concrete slab, 2 BTUH per sq ft U factor.
	Total Exposed Wall Area Sq Ft: <u>10,430</u>
	Total Glass Area Sq Ft: _6,650 Percent 39
D.	HOURS OF OCCUPANCY AND OPERATION
	Working Hours: <u>8am to 6pm weekdays, 9am to noon sat.</u>
	Lighting Hours: <u>8am to 9pm weekdays, 3 hrs sat.</u>
	HVAC Hours: <u>Cooling and heating year around</u>
	Janitorial Cleanup Times: <u>6pm to 9pm weekdays</u>
	Computer Room: <u>24 hrs per day, 365 days per year</u>
	Other:
£.	HEATING AND COOLING SYSTEMS DESCRIPTION
	Interior office spaces, high pressure terminal reheat system
	High pressure perimeter induction system, 100% primary air
	Chilled water cooling: 1 centrifugal chiller
	Hot water heating, oil fired
	Kitchen, Dining: Single zone low pressure
	Computer Room: Single zone Low pressure
Wen	les Mechanical Consulting Services Co. Form AUD 30

Figure 2-5. Sample Filled Out Building and System Description Form

	Total Heating, Cooling, Electrical, Lighting Per Yr:
	Total BTU:24.9 Bill BTU Per Sq Ft:276,600
	Total Energy Costs: <u>\$339,862</u> Costs Per Sq Ft: <u>\$3.78</u>
	Electrical, Total KWH: <u>3,829,411</u> KWH/Sq Ft: <u>42.55</u>
	Total Elec. Costs: <u>\$268,062</u> Costs/Sq Ft: <u>\$2.98</u>
	Heating Fuels, BTU Per Yr: <u>11.8 Bill.</u> Per Sq Ft: <u>131,110</u>
	Total Fuel Costs: <u>\$71,800</u> Costs/Sq Ft: <u>\$.81</u>
G.	ORIGINAL ENVIROMENTAL DESIGN CONDITIONS
	Heating
	Peak Heat Loss BTUH: <u>4.8 Mill. Output</u> Degree Days: <u>6,000</u>
	Design Temperatures: <u>-10F, 74F</u>
	Avg Winter Temp.: <u>35</u> Avg Winter Hours: <u>4,800</u>
	Cooling
	Peak Heat Gain BTUH: <u>310 tons</u> Degree Days: <u>682</u>
	Design Temperatures: <u>94F_DBT, 75F_WBT_Outdoors</u>
	74F DBT 50% RH Indoors
	Avg Summer Temp.: Avg Summer Cool Hours:900
	Air and Hydronic Flows
	Supply CFM: <u>121,000</u> CFM/Sq Ft: <u>1.34</u>
	Exhaust Air CFM: 7,300 Exh Air/Sq Ft: .08
	Min Outside Air CFM: <u>30,000</u> UA Per Person, Sq Ft: <u>75 or .3/sq</u>
	Make Up Air CFM:5,400
	HVAC GPM:1.954 Domestic GPM:
١.	LIGHTING
	Levels in Foot Candles:100-200
	Levels in Watts/Sq Ft: <u>4.0 avg</u> .
	Type:Fluorescent
Ι.	ELECTRICAL SERVICE
	Type: Underground Metering: Primary
	Voltage:277/480V, 3 phase, 4 wire, wye
1.	CONNECTED ELECTRICAL LOADS (KWIS)
••	Lighting: 360 KW Office Equipment: 37.10 area KW
	Heating and Cooling Equipment: 286 with
	Air Handling and Exhauster 160 Mu
	Cooking: 50 Vit Hardses, 100 KW
	Total: 003 VU
	10cat. 903 KW

Figure 2-5. Sample Filled Out Building and System Description Form (Cont'd)

This page intentionally left blank

ELECTRICAL CONSUMPTION HISTORY PER MONTH

The electrical consumption history per month form is essential for transferring the electric consumption kWh's, demand charges and costs from the electrical utility bills to a list that can be added up for yearly totals, and studied. Then ratios such as cost per square foot of building can be calculated and noted at the bottom—for evaluation against other building costs, budget figures, benchmarks etc.

DOILOING	i SU 	BURBAN OFFICE	BUILDING	YEAR	1984		
				SIZE SQ FT		90,000	
			ε	LECTRICAL COSTS			
======	===== NO				======	********	****
MONTH	OF DAYS	KWH USED	PER KWH	PEAK CHARGE	FACTOR	FUEL ADJ	TOTAL CUST
JAN		262,651	0.0670	\$769	222222	0.200	\$17,598
FEB		285,739	0.0600	.659		0.200	\$17,144
MAR		219,792	0.0722	769		0.417	\$15,875
APR		230,782	0.0670	659		0.417	\$15,462
MAY		311,006	0.0760	1,429		0.200	\$23,636
JUNE	*	362,657	0.0780	1,429		0.200	\$28,287
JULY		403,318	0.0720	1,319		0.200	\$29,039
AUG		429,693	0.0720	1,429		0.200	\$30,938
SEPT		422,001	0.0750	1,539		0.200	\$31,650
OCT		350,568	0.0690	1,319		0.200	\$24,189
NOV		275,839	0.0620	769		0.200	\$17.102
DEC		270,161	0.0640	659		0.200	\$17.290
TOTAL		3,824,207	0.0701	0 12,748			\$268,210
AVG/MO		318,684	0.0701	0 1,062	******	********	\$22,351
Averag Averag BTUH e BTUH a Averag Averag	je KWH p je elect quivale verage je cost je BTU p je KWH p	er sq ft of b rical cost pe nt for year, per month, per million 8 er sq ft of b er hour	uilding pe r sq ft of (KWH=3413 TUH uilding pe	r year building per yea BTUH) r year for electr	r ical	42.49 \$2.98 13.05 bi 1.09 bi \$20.55 13,052 437	illion illion

Figure 2-6. Sample Filled Out Electrical Consumption History Per Month Form

HVAC EQUIPMENT SCHEDULES

Overall listings of all the HVAC equipment, air handling units, fans, pumps, and chillers are required for a concrete comprehensive view of the systems in the building and easy review of their performance.

It is necessary to know the key design figures of the major HVAC equipment as indicated on the plans, and to have specifications of flow, pressures, temperatures, electrical, etc. Then take actual readings to know what the current figures are.

From these two sets of figures discrepancies between design and current actuals are noted, evaluated, and the systems corrected as required. Then actual figures are rechecked and become the basis for determining the actual energy saved after the retrofit and for monitoring purposes.

Separate reports for taking readings and for recording in more detailed for major equipment follow in forthcoming pages.

	AVAC EQUIPMENT SCHEDULE														
Job:	CORP. OFFICE E	LDG.				Locat	ion:								
EVETEN	CTRVCC	EQPT	TYPE	00 FAN		o Pump		,	IOTOR		coc	LING C	OIL	HEATIN	G COIL
	JERTES	LUCAT	EQPT	CO CFH C GPM	RPM	COSP ⊡FTHD	OUTLET VELOC	HP	AMPS	VOLTS	мвн	TONS	GPM	мвн	GPM
<u> </u>	INTERIOR OFFICE EAST		AHU	38.000	1585	8*		75	96	460	1140	95	228	800	80
<u>S-2</u>	INTERIOR Office West		AHU	38,000	1585	8*		75	96	460	1140	95	228	800	80
<u> </u>	Perimeter Offices		AHU	7,000	2832	7.		10	28	230	600	50	120	760	76
S-4	COMPUTER RM.		AHU	10.400		2*		10	28	230	312	26	62	125	13
S-5	CAFETERIA & Kitchen		АНИ	9.800		15"		5	15	230	300	25	48	70	70
<u>S-6</u>	Toils, Stor. Mech. Rm.		MZ	7,200		15"		5	15	230	216	18	43	89	89
	TOTALS			121,200				180			3708	303	729	2644	408
MUA-1	Kitchen		MUA	5,400	760	1"		3	9	230				467	
	Motors:		3 P.H.,	1 CYCLE.	1750 R	PM									

HVAC EQUIPMENT SCHEDULE

FAN EQUIPMENT SCHEDULE

Date: <u>11-8-84</u>

Job:	Location:					vate: <u>_11_0_04</u>									
SYSTEM	SERVES	EQPT LOCAT	TYPE EQPT FANS	🖾 FAN	CI PUMP			MOTOR			COOLING COIL			HEATING COIL	
				⊠ CFM ⊡ GPM	RPM	ØSP DFTHO	OUTLET VELOC	нр	AMPS	VOLTS	нвн	TONS	GPM	мвн	GPM
R-1	INTERIOR Office East		CENTRIF	32,000	509	2*		15	42	230					
R-2	INTERIOR Office West		CENTRIF	32,000	509	2"		15	42	230					
TE	TOILETS		PRE	675	700	3/8*		1/4	3	115					
KE	Kitchen Hood		Pre	5,400	760	1-		3	9	230					
E-1	CONFERENCE RM		WALL	600	960	1/4*		1/4	3	115					
E-2	CONFERENCE RM		WALL	600	960	1/4-		1/4	3	115					
	TOTALS	L		71.275				34							<u> </u>

PUMP EQUIPMENT SCHEDULE

Date: 11-8-84

JOD: CORP. OFFICE BLDG				Location:											
SYSTÉM	SERVES	EQPT LOCAT	TYPE EQPT	CIFAN COPUMP				MOTOR			COOLING COIL			HEATING COIL	
				C CEM Dá gpm	RPM	⊡SP KäfthD	OUTLET VELOC	HP	AMPS	VOLTS	мвн	TONS	GPM	мвн	GPM
P-1	CHILLED WATER	 	PUMP	744	1750	93		30	40	460					
P-2	HOT WATER		Pump	466	1750	80	L	20	27	460					
P-3	COOLING TOWER		Pump	744	1750	93		30	40	460					
CH-1	Chiller							300	339	460	• • •	310	744		!
								(224	w)						

Figure 2-7. Sample Filled Out HVAC, Fan and Pump Equipment Schedule

ELECTRICAL CONSUMPTION GRAPHS

The electrical consumption figures can be punched into a spreadsheet and graphed automatically as shown.

This helps greatly to visualize and analyze the electrical energy situation in terms of overall costs, demand charges and kWh per month. Peaks and valleys are more easily recognized and dealt with.

Figure 2-8. Electrical Consumption Graph Samples

EQUIPMENT TEST REPORTS

Detailed test reports for each major piece of equipment in the building involved with the energy audit and retrofit are very important for accuracy, auditing, redesigning and monitoring later.

These reports record the key performance figures such as:

- gpm
- cfm
- Amp draws
- Pressures
- Temperatures, etc.

They also record important information such as:

- Detailed description of the equipment
- Manufacturers
- Model numbers.
- Maximum amp draws on motors
- Service factors
- Settings of dampers and valves
- Pressure drops

Test reports are required on major equipment such as fans, pumps, chillers, condensers, boilers, etc.

The following three equipment test reports are also found in the testing and balancing chapter with further information on them.

FAN TEST	REPORT				
Job North High School	Ich No C-1	50 Dat	Aua.	1. 1981	
Location		<u>Svster</u>	s ing s	- 2	-
Fauinment Location Mezzanine Serves L	UnchroomI	ested By	HW	1	•
Fin Handling Unit People Top Unit Prope				Pkg Unit	-
LP MP HP Constant Volume VAV			lust ran (
FAN DATA		ното)R		
Manufacturer Barry	Manufacturer	GΕ	Serial N	0.	
Model Size AF 1245 DWDI	Frame No. 184	IT Ty	vpe Frame	🗆 τ 🖬 🗹	
Type Fan Itoline Dyane Avial Decon	Service Facto	r:1.15	Rated	Actual	
	HP, Nameplate		5	<u> 5 </u>	ļ
Type Wheel Groward Curve Paddle Wheel	BHP (HPnp x Aa		3.53	3.84	1
Wheel: MAlignment OK BGap BFastened SClean	Amps, L ₁ L ₂ L	3	15.2	12.2	1
Belts(2) B131 C to C Distance 52"	Voltage, L ₁	L ₂ L ₃	230V	220V	
Pulleys: Fan Dia. 10" Mot. Dia. 5"	RPM	_	1750	1750	1
Motor Movement 2" ± Belts	Phase		3	3	
Bearings 🖌 🗹 Cut Off Plate OK					_
		STAR	TER]
FAN PERFORMANCE	Manufacturer	GE	Mode	1141R	
Design Actual	Starter Size	0	Class	1	1
Fan CFM 9.800 10.160/1047	Overload: Req	uired S:	ize CR 1	5.4	1
Outlet CFM Total 9,800 9,756/997	Act	ual	CRI	5.4	
Fan 38M 985 992					-
Fan S.P. 11/2" 1.6"	STAT	IC PRES	SURE DROPS	5	1
		Upstream	Downstream	Total Drap	1
CONDITIONS	Filter	.2"	.4"	.2"	W.G.
Vortex Damper Position	Heat. Coil	.4	.6	.2	
Outside Air Damper Setting 4000 CFM	Cool. Coil	. 6	1.0	. 4]
Return Air Damper Setting 6160 CFM	Fan Inlet			1.0	
Filter Conditions Clean	Fan Discharge			.6	
Coil Conditions Clean	Total F	an S.P.		1.6"	1
Temperatures					-
OA: 240% 40F DB WB RH					
RA: 70F DB WB RH					
Mixed Air: DB WB RH	PROBLEMS:				
Discharge DB WB RH	Too much air		PLow	🗌 Too Hai	:
Space: DB WB RH	☐ Too little air □ Air Noises	C SI	P High an Noises	Too Cold	ł
Duct Temp. Drop DB	Oversized equi	pment 🖸	Undersized	Equipment	
Remarks	🗆 Other				
Wendes Engineering and Contracting Services			7/80 (Form TA8 201	

Figure 2-9. Sample Filled Out Fan Test Report

uipment Location	Penthou	JSC Serve	s Bldgs A, B, C T	ested by:_	HW		
Df11			Гж				
anufacturer Be	II & GA	ssp++	Manufacturer B & (S Serial	No 521894		
Indel Size 4 "	88	33,412	Frame No. 2547		Easter 1/6		
Type Pump Cent	rifuad			Rated	Actual		
Impeller Size 9	1/2 " die	2,	HP. Nameplate	15	licouur		
Imperier bille	Rared	Actual					
GPM	480	454	Amps, L ₁ L ₂ L ₃	42			
Total Fr. Head	78	82	Voltage, L ₁ L ₂ L ₃	230	1		
RPM	1750	1750	RPM	1750			
			Phase	3			
PUMP I	RESSURES				.1		
		Actual	ST	ARTER			
Static Hd(Pump Off	;}		Manufacturer G, E	Mode	1		
Discharge	1	90 FT	Size Z Class				
Suction		30FT	Overload: Required Size : R 43.1				
	-	40 FT	Actual:				
Block Off: (Runnir	ig, no flow						
Discharge	1	150 FT					
Suction		45 FT					
Total		95 FT					
Running:							
Discharge		100 FT					
Suction		18 FT					
Total		82 FT					
HP [HPnp x Åa x Va]			KWH Per Year =	31* Avg x Amps x 1000	Yearly Hours of Operation		
marks			= [
			<u></u>				
			·······				

Figure 2-10. Sample Filled Out Pump Report

North High	CHIL		ES		•	Δυσ	15	190
JOB NOFTH HIGH	JENOO			Job No. C-IJC	Da	te nog		110
Location Mon	haviar	0-0	DI	LENBO	Sy	stem	41./	,
Equipment Location	nanical	AM Serve	es Di	ags. H, D, C T	ested	by:	nw	
				COMPER	2000	HOTOR		
COMPRESSO	DR DATA			COMPRE:	SSUR .	MOTOR		
Manufacturer WESTI	ngnous	e 1142		anulacturer WCSTI	<u>ign.s</u>	erial N	<u>o.</u>	
Model/Size PE063JP	10-720V/F	LOHITY		rame No.	Type	Frame		
Type Package Le	ntritug	<u>al</u>		Svc. Factor: 1.13	Ra		ACTI	Jal
Capacity 200	tons @	SO GPM		IP, Nameplate	-	.00		
Refrigerant 12	Pounds	110		HP [nrnp x Ar x Vr]		21		
KW 152 KW P	er Ton	ь	<u> </u>	imps, L ₁ L ₂ L ₃	<u> </u>	54		
Serial No. WH 25°	1100			oltage, Li Li Li	10		· · · ·	
			ľ	RPM	18	200		
r			, Ľ	hase	<u> </u>	5		
COMPRESSOR	Design	Actual						
Suction Pressure		<u> </u>	╎┝	ST	ARTE	2		
Suction Temp.			4	lanufacturerWesti	ngh	Model		
Discharge Press.	Discharge Press.			Size 3 (lass	NEM	<u>A 1</u>	
Discharge Temp.	Discharge Temp.			Overload: Required	Size	: 5R	240	
Oil Temp/Press.			IL	Actual:				
P			, r					
EVAPORATOR	Design	Actual	╏┝	CONDENSER		Design	Act	ual.
Refrig. Pressure	370519		╏┝	Liquid Line Pressu	re			
Refrig. Temp.	40 F		╏┝	Liquid Line Temp.				
Ent. Water Pressure			Į ∣	Ent. Water Press.			+	
Lvg. Water Pressure	<u> </u>		╏┝	Lvg. Water Press.				
Ent. Water Temp.	54F		╽┝	Ent. Water Temp.		<u>85 F</u>	·	
Lvg. Water Temp.	<u>44</u> F			Lvg. Water Temp.		45F		
Flow GPM		<u> </u>	1 L	Flow GPM				
f			7		.	Avg	Yearly	Hours
CONDIT	TIONS		к		э. х	Amps X	of Oper	ation
Refrigerant Level	<u>~</u>		P	er Year		1000		
Oil Level			Į	KW's =]	
Percent Cylinders Un	loaded		R	emarks				
Chilled Wat. Control	Setting			Purge Operation	Check	ed		
Condenser Wat. Contro	ol Setting			Crankcase Heater	Chec	ked		
Low Wat. Cutout Temp	. Setting		-					
Low Pressure Cutout	Setting		_	· · · · · · · · · · · · · · · · · · ·				
High Pressure Cutout	Setting		」_		·····			

Wendes Engineering and Contracting Services

7/80 Form TAB 214

Figure 2-11. Sample Filled Out Chiller Test Report

ELECTRICAL LOADS PER SYSTEM

This valuable form lists the electrical loads and costs separately for each system in the building and allows you to summarize the total for all of the figures and provides an easy review of the systems in recap form.

Data entered cover electrical ratings of the motors:

- Hours of operation
- Actual average electrical loads
- kWh consumed per year
- Electrical utility cost for each piece of equipment for the year.

1

E	LECT	RICAL	LOA	DS	PER SY	STEN	1		
		🖂 exi	I ST ING		🗌 NEW				
BUILDING SUBUR	BAN OFFI	ICE BUIL	DING				Date	09	-27-1985
AIR HANDLING EQUI	PMENT	[🛛 Seas	onal	Sum	mer	 W i	nter 🛛 Y	ear Around
	******	******		****					
	HP	RAT	ED		HOURS OF	ACT AVE	UAL RAGE	КМН	COSTS
ITEM	OR	VOLTS	AMPS	PH	OPERATION PER	VOLT	АМР	PER	PER
	KWH				YEAR	LOAD	LOAD	YEAR	YEAR
S-1, AHU, INT. EAST	75	460	96	3	5,260	460	77	322,315	\$22,562
S-2, AHU, INT. WEST	75	460	96	3	5,260	460	77	322,315	\$22,562
S-3, AHU, PERIMETER	10	460	28	3	5,260	460	25	104,648	\$7,325
S-4, AHU, COMPUTER RM	10	460	28	3	8,760	460	25	174,280	\$12,200
S-5, AHU, CAFETERIA	5	460	5	3	2,500	460	4	7,958	\$ 557
S-6,MZU,TOILETS,STORAGE	5	460	5	3	8,760	460	4.2	29,279	\$2,050
MUA-1, KITCHEN	3	230	9	3	2,500	230	7	6,963	\$487
R-1, CENTRIFUGAL FAN	15	230	42	3	5,260	230	35	73,253	\$5,128
R-2, CENTRIFUGAL FAN	15	230	42	3	5,260	230	34	71,160	\$4,981
PRE. TOILET EXHAUST	0.25	115	3	1	8,750	115	2	3,486	\$244
PRE, KITCHEN EXHAUST	3	230	9	3	2,600	230	8	8,276	\$579
E-1, WALL FAN, CONF.	0.25	115	3	1	2,600	115	2.5	1,293	591
E-2, WALL FAN, CONF.	0.25	115	3	1	2,600	115	2.5	1,293	\$91
(S-1, S-2, S-3, R-1, R-2 of	f night	s and w	eek end	s,Ap	ril thru N	ov.)			
TOTAL	217		 369	= = =	*******	******	303.2	1,126,520	\$78,856
KWH/YEAR = 1.73 x I	x E x H				COSTS PER	 KWH =	\$0.079	**********	
	1000								
Wondag Mochanian's Const	ilting 5		60					_	
WHEELS COUNTER CONSU	sicing Se	ervices				_		Form	AUD 305

Figure 2-12. Sample Filled Out Electrical Loads Per System Form

RECAP OF ALL ELECTRICAL LOADS

This form summarizes all the electrical loads in the building or in the complex, from all sources, not just major HVAC equipment.

It includes the total loads from:

- Lighting
- Air handling equipment
- Hydronic heating
- Air conditioning equipment
- Computers
- Office equipment
- Kitchen equipment
- Machinery

The totals from this sheet get transferred to the building and system description form.

	201110		ISTI				RECAP		
BUILDING SUBURBAN (DFFICE BUIL	DING					Date	11-18-	1985
		Ø	Yea	r Around		Summer	U Wi	nter	[] Pe
	CONNEC	TFD	***	HOURS	4 T TA			21200	
ITEM	LOA	0		OF OPERATION	L0	AD	KWII PER	PER	OF
	KWH	н₽	РН	YEAR	КМН	BHP	YEAR	YEAR	TOT
LIGHTING, WINTER	360			2,200	360	* 3 2 4 7 7	792,000	\$55,440	0.2
SUMMER	360		•••	1,800	360		648.000	\$45,360	0.1
AIR HANDLING EOPT.	160	216	•		•••••		1.126.520	\$78 856	
CHILLERS, PUMPS. COOL THE	286	384	•••			•••••	980 626	444 837	
COMPUTERS	10			8 760			97 600	100,014 	
OFFICE FOUTPMENT		 >c		1 600			87,000	30,132	0.0
KITCHEN FORIDAGUT	50 50		•••	2,000			000,000	34,550	0.0
A DOG ALL	5U			2,500			125,000	38,750	0.0
3,829,411 KWH /	/ 90,000 sc 	1 ft 	•	42.55 KV	/ sq 	ft / yn 			
\$268,062 / 90,0	000 sqft			\$2.98 /	sq ft	/ yr			
3,829,411 KWH >	416 BTU	/ KW	-	13.1 B	illion	equival	ent BTU		
τοτλ:	Q() 7	625	111	*******	******		3 974 745	\$267 732	27822

Figure 2-13. Sample Filled Out Recap of All Electrical Loads Form

HEAT LOSS CALCULATION FORMS

The original heat loss calculations and capacity HVAC equipment chosen at the time, may have greatly changed over the years and new heat loss calculations are required based on current conditions, to end up with a reliable energy retrofit program.

Lighting loads may have been reduced, insulation added, thermal windows added, temperature settings changed, etc., since the building was built, and the old figures are no longer valid.

New calculations based on the current conditions are required for a valid audit and energy conservation program.

The heading on the heat loss calculation sheet describes the building, its size, design temperatures, etc.

The lines below list all the components involved in the heat loss calculations: roofs, floors, walls, windows, etc., along with dimensions, sq. footage, U factors and temperature differences.

The next column to the right is for the extended total Btu for peak load per hour calculations, and for equipment sizing purposes.

The far right column lists the seasonal hours involved.

Total peak Btu's and tonnage are summed at the bottom.

	PEAK PER IIR	🖾 SEASONAL	\boxtimes	EXISTING	NEW	
Building Sl	BURBAN OFFICE BUIL	DING			Date 11-18-13	85
Location				 د د	ntitude 41	
Type Building (OFFICE AND LABS		Stories	1	When Built 196	7
Sq Ft Area S	90,000		Cub i	c Ft of Sp	ace 1,260,00	0
X Calculation i	for Whole Building	For	Partial	Area		
Budget Load: Sq Fi	90,000	x BTUYR/	Sq Ft	78,500	= 7,065 Mill 8	BTUYR
Outside Design:	D8 -10 WB	Avg OA	Temp.	35 W	inter Hours 4	,800
Inside Design: Di	 3(day) 74	RH	DB (ni	ght)		
****************	***********	***********	******		*****	
ITEM	DIMENSIONS	SQ FT	ប	TEMP DIFF	BFU: Per Hour Seasonal	SEASONA Hour
ROOF OR CEILING	360 X 250	90,000	0.110	39.00	1,853,280,000	4,800
FLOOR	360 X 250	90,000	0.100	16.00	691,200,000	4,800
GLASS	950 X 7	6,650	1.100	39.00	1,369,368,000	4,800
DOORS				• • • • • • • • • • • • • • • • • • • •		
WALLS	1220 X 14	10,430	0.330	39.00	644,323,680	4,800
COLD INSIDE WALLS				• •••••		
VENTILATION	1.43 AC/HR CFM=	30,000	1.080	39.00	6,035,280,000	4,800
DUCT LOSSES	· · · · · · · · · · · · · · · · · · ·			• ••		
GROSS TOTAL H	EAT LOSS	***********	* ******		10,623,451,680	
HEAT GAINS; LITES	4%/50 FT	90,000	4.00) 3.416	3,074,400,000	2,500
PEOPLE	No, People =	400	25)	200,000,000	2.000
OFF. EQUIPMENT		25	2.55	-	127,500,000	2,00
COMPUTERS		5		3416.00	149,620,800	8,760
TOTAL INTERNA	L GAINS			* *******	3,551,520,800	
NET TOTAL BUILDING	HEAT LOSS				7,071,930,880	78.57
INPUT TO UFAT	ING EQUIPMENT of	ficiency =			11.800.000.000	131.11
	U x Temp_ Diff.	RTH/YF AP	: ::::::: : Sa Ft	a τεστατα x 1] ζ Δνο	Temp. Diff. x Win	ter Hour
		U.U.I.CON	a 4 1 1	* BLAN	Q FT/YEAR	

Figure 2-14. Sample Filled Out Heat Loss Calculation Form

COOLING LOAD CALCULATION FORMS

The original cooling load calculations and capacity HVAC equipment chosen at the time, may have greatly changed over the years and new cooling load calculations are required based on current conditions, to end up with a reliable energy retrofit program.

Lighting loads may have been reduced, insulation added, thermal windows added, temperature settings changed, etc., since the building was built, and the old figures are no longer valid.

New calculations based on the current conditions are required.

The heading on the cooling load calculation sheet describes the building, its size, design temperatures etc.

The lines below list all the components involved in the cooling loads calculations roofs, floors, walls, windows, etc., along with dimensions, sq. footage, U factors and temperature differences.

The next column to the right is for the extended total Btuh for peak load per hour calculations and for equipment sizing purposes.

Total peak Btu's and tonnage are summed at the bottom.

COOLING LOAD CALCULATION

🖾 PEAK PER HR 🔲 SEASONAL 🛛 🖾 EXISTING 🗌 NEW

Date 11-18-1985 SUBURBAN OFFICE BUILDING Building ------Latitude 41 Peak Load, HR, MO: Location _____ Type Building OFFICE AND LABS Stories 1 When Built 1967 1 5 Space 1,260,000 ---------Sq Ft Area 90.000 Cubic Ft of Space ------_____ -----X Calculation for Whole Building For Partial Area Building Load: Sq Ft90,000xSq Ft/Ton270=333 TonsOutside Design:DB95WB75Avg OA Temp.35Summer Hours900 Inside Design: DB(day) 74 RH DB(night) 74 _____ -----_____ U or TEMP SENSIBLE FACTOR * DIFF BTUH TONS LATENT SQ FT BTUH ITEM (Orient.) DIMENSIONS 90,000 0.110 20.00 198,000 16.50 ROOF OR CELLING ----------15.00 22,500 1.88 1,500 GLASS EAST ----- ------ -------- -------- -50.00 108,000 9.00 2,160 (Solar) SOUTH 15.00 22,500 1.88 1,500 WEST --- ----------____ 5,160 1.130 20.00 116,616 9.72 GLASS SOUTH _____ ____ 0.00 (Conduction) 9,040 0.167 20.00 30,194 2.52 WALLS E,W,N ------......... -------- ------- -------2,880 0.167 50.00 24,048 2.00 (Conduction) -- ----- ------ ------- ------_____ 90,000 4 3.416 1,229,760 102.48 LIGHTING 400 250 250 100,000 8.33 100,000 - ---- ------PEOPLE, NO. (NO.) ---------- ----- . _____ 63,750 5.31 OFF. EQUIPMENT MOTORS (HP) 25 2,550 -----10 3,416 34,160 2.85 COMPUTERS (KW) ----- ------ ------- ------ -------_____ 0.00 KITCHEN ------- -VENTIL. AIR, Sens 1.43 AC/HR 30,000 CFM 1.08 20.00 648,000 54.00 VENTIL. AIR, Lat. 1.43 AC/HR 30,000 CFM 0.010 4,840 0.00 1,452,000 SENSIBLE 2,597,528 216 TOTAL COOLING LOAD, BTUH = Sq Ft x U x Temp. Diff. LATENT 1,552,000 121 * U, CLTD, CLF, KW, HP, WD CLTD = (Temp diff) - (Daily Range + 14)/2 GRAND TOTAL 4,149,528 337 267* * Sa Ft/Ton

Figure 2-15. Sample Filled Out Cooling Load Calculation Form

PEAK HEATING, COOLING AND CFM PER AREA

This very valuable form shows the peak heating and cooling loads for the main areas in the building and the amount of cfm in each area.

The form can be used to examine the original design or what the current loads actually are, in order to analyze and find areas of energy waste and then to do calculations based on energy savings proposals.

PEAK HEATING, COOLING AND CFM PER AREA

🛛 EXISTING

🗌 NEW

BUILDING SUBURBAN OF	FICE BUILDI	NG			1	DATE	11-18-19	85
	TOTAL S	Q FT	90,000	AVER.	AGE CI	M PER	TON	400
***************************************	50 ET	COOL ING	G LOAD	HEATING	LOAD	CFM	SUPPLY	
AREA	OF AREA	SQ FT PER TONS	TONS	BTU PER SQ FT	мвн	CFM PER SQ F1	CFM r	EXT. CFM
INTERIOR OFFICES, EAST	31,275	330	95	25	782	1:20	37,909	
INTERIOR OFFICES, WEST	31,275	330	95	25	782	1.20	37,909	
PERIMETER OFFICES, EAST	3,489	250	14	60	209	1.60	5,582	
PERIMETER OFFICES, SOUTH	4,950	225	22	60	297	1.60	8,800	
PERIMETER OFFICES, EAST	3,489	250	14	60	209	1.60	5,582	
CONFERENCE ROOM, EAST	450	250	2	60	27	1.60	720	1,200
CONFERENCE ROOM, WEST	450	250	2	60	27	1.60	720	1,200
VESTIBULE	225	100	2	35	8	4.00	900	
COMPUTER ROOM	3,600	140	26	35	126	2.90	10,286	
MENS TOILETS	224	400	1	53	12	1.00	224	225
WOMENS TOILETS	224	400	1	53	12	1.00	224	225
WOMENS LOUNGE	224	400	1	53	12	1.00	224	225
HALLWAY	300	400	1	35	11	1.00	300	
BUILDING ENGINEER	225	400	1	35	8	1.00	224	
STORAGE ROOM	1,800	650	3	35	63	0.61	1,108	
MECHANICAL ROOM	4,800	400	12	35	168	1.00	4,800	
KITCHEN	1,000	1,43	7	60	60	2.80	2,797	5,400
CAFETERIA	2,000	150	13	35	70	2.70	5,333	
TOTAL	90,000	290	310	31 2	2,883	1.37	123,642	8,475

Figure 2-16. Sample Filled Out Peak Heating, Cooling and CFM Per Area

ENERGY COST AND BTU PROFILES

Totals on energy costs and Btu energy consumption can be entered into a computer spreadsheet, and pies graphed out, to better see major or minor areas.

The BIG CHART

Figure 2-17. Sample Filled Out Energy Cost Profile/Btu Energy Consumption Profile

\$101,000 lightin 32%

RESIDENTIAL AUDITS

The purpose of the residential energy audit forms is to help detect and evaluate unnecessary energy losses, and to help evaluate and select various energy savings.

The primary areas of energy problems in residences are as follows:

- 1. Lack of *insulation* in walls, ceilings, roof, floors, etc.
- 2. Lack of storm windows and doors, or double or triple pane windows.
- 3. *Low efficiency* heating and/or cooling equipment.
- 4. *Inefficient performance* from heating and/or cooling equipment. Inefficient combustion.
- 5. *Uninsulated ducts* or hot water pipes in unconditioned spaces such as the attic or crawl space.
- 6. Loose windows, doors, wall openings allowing excessive *leakage* in and out of the house.
- 7. No set-back/set-up *thermostats*. Improperly located stats.
- 8. Unbalanced systems with hot rooms and cold rooms.

ENERGY CONSUMPTION HISTORY

One of the most important things that has to be looked at in an energy audit is the energy consumption of the project.

In order to see if there is an energy waste problem or to what the extent there is of the problem—the heating fuel and electrical bills for the past year must be gathered and the amount of energy consumption and costs per each period listed.

Then the listing must be totaled for the year and the Btu per sq. ft. of building per year must be compared to other similar structures in the same area.

- 1. Fill out the heading first with the job name and type of heating fuel.
- 2. Fill in the period of time for each bill, number of days, unit amount of fuel used, convert to Btu and enter. Last, fill in the cost for the period.
- 3. Everything is converted to Btu's as the benchmark comparison of the totals.

Јор			Date _		······································
ENERG	C C	ONSUMF	PTION	HIST	ORY
PRIMARY HEAT		Natural Gas		Oil Btu pop	
Propane		Electricity		Coal	3al
Fill in for a complete of	ne yea	r period		btu per .	
	1	FUEL	DOU		
Period	Days	Cubic Feet Gallons or LBS Consumed	for Period*	Cost	
Tatal Fa	Vaan				
Iotal For	E	LECTRIC		J	-
Period	Days	K₩'s Consumed	BTU for Period*	Cost	
	<u> </u>				
		· · · · · · · · · · · · · · · · · · ·	······································		
			· · · · · · · · · · · · · · · · · · · ·		
Total For	r Year				

*Multiply energy consumed by BTU per unit. Example: 1000 cu. ft. gas x 1030 BTU/CU FT = 103,000 BTU

Wendes Engineering and Contracting Services

Form AUD 302

Figure 2-18. Sample Filled Out Energy Consumption History Form

WALL, ROOF, FLOOR, WINDOW ENERGY EVALUATIONS

When conducting a residential energy audit it is often necessary to analyze the wall, roof, floor, window and door construction in detail and calculate the R factors and resultant U's.

These forms lead the auditor through the whole energy conservation calculation process from beginning to end and determine the bottom line value of the energy conservation proposals. They help determine:

Overall R and Resultant U Factors Existing Conduction Heat Loss Per Year Proposed Energy Improvements New Heat Losses Heat Loss Reduction Per Year Fuel Reduction Per Year Cost Savings Per Year

To determine the existing R factors and the factors for the energy conservation change, the components that make up the wall, etc. are listed, along with their individual conductivities, and a total R factor is calculated using ASHRAE or some other publication as a reference.

Job

_____ Date ___

OUTSIDE WALL ENERGY EVALUATION

List all materials including air space Enter R factor and total.

EXISTING CONDUCTION HEAT LOSS PER YEAR

Figure 2-19. Sample Filled Out Outside Wall Energy Evaluation

```
Job
```

_____ Date ____

CEILING AND ROOF ENERGY EVALUATION

List all materials including air space Enter R factor and total.

SQUARE FOOT AREA

EXISTING CONDUCTION HEAT LOSS PER YEAR

PROPOSED ENERGI IMPROVEM

Figure 2-20. Sample Filled Out Ceiling and Roof Energy Evaluation

Date____

CEILING AND ROOF ENERGY EVALUATION

List all materials including air space Enter R factor and total.

SQUARE FOOT AREA

Figure 2-21. Sample Filled Out Windows and Doors Evaluation Form

Job

_____ Date ____

COLD FLOOR ENERGY EVALUATION

List all materials including air space Enter R factor and total.

SQUARE FOOT AREA

EXISTING CONDUCTION HEAT LOSS PER YEAR Avg ` Winter Divide by: /Net` Total (Mill. BTU Per Year) Heat Loss (Efficiency) Area Winter of Heating Sq Ft Temp Diff Equipment PROPOSED ENERGY IMPROVEMENTS Description New, New New Heat Loss: (Same Formula as Above) _____X _____X _____X _____; ____; X _____ X ____ X _____ Subtract new head Heat Loss Reduction Per Year loss from existing Fuel Reduction Per Year Divide by BTU's per unit of fuel Cost Savings Per Year Multiply by \Box cost per unit of Fuel $|\chi|$ S _ __per X S per or 🗆 cost per million BTU S S Wendes Engineering and Contracting Services Form AUD 317

Chapter 3 Indoor Air Quality Procedures and Forms

PROBLEMS

Exposure to indoor air pollution is one of the major environmental health hazards in the United States today. IAQ problems lead to worker complaints, health problems, respiratory problems, reduced productivity and lawsuits. IAQ-related health problems are estimated at \$15 billion a year and almost 2 billion lost work hours. About 30 percent of the people are complaining. Allergies caused by airborne biological particulates are estimated to effect 25 million people in the United States.

Indoor pollutant levels are often higher than those outdoors. Generally outdoor air is 20 times cleaner than indoor air and the average American spends 90 percent of his or her time indoors. Organic pollutants may be two to five times higher inside homes, and individual chemical pollutants up to 20 percent higher than outside.

Up to 20 percent of new commercial buildings may be affected by unhealthy concentrations of organic compounds as much as 100 times higher than found outdoors.

There is an imminent need for cleaner indoor air, to know and recognize causes of poor IAQ, to eliminate IAQ problems and pollutants, and to be able to diagnose, test and rectify effectively. Knowledge and skills with instruments, IAQ auditing procedures, analyzing skills, methods of correcting HVAC system deficiencies, etc., are required by those involved with IAQ.

SPECIFIC CAUSES OF INDOOR POLLUTION

- INADEQUATE VENTILATION
 - Inadequate Outside Air
 - Improperly Controlled Outside Air
 - Inadequate *Exhausts* Toilet, Kitchen, Return Air, Fume, etc.
 - Tight Building
 - Short Circuiting of Air in Spaces
 - Improperly Pressurized Building
 - Inadequate *Filtering* of Air

INDOOR GENERATED CONTAMINANTS

- Tobacco Smoke
- Gas Leaks
- Freon Leaks
- Aerosols, Cleaners
 - Hair sprays, Cleaning Sprays, Disinfectants
- Pesticides
- Fumes, Chemical
- Nitrogen Dioxide
- Products of Combustion, Carbon Monoxide Holes in Heat Exchanger and Flues Clogged Flue or Chimney
 - Engine Exhausts, car, trucks
- Copy Machines
- Lasers
- Hibachis and Charcoal Broilers

— BUILDING MATERIALS, FABRICS, FURNISHINGS

- Carpets
- Sheets and Blankets
- Carpet Adhesives
- Furniture
- Fabrics in Furniture and Drapes, etc.
- Wood, Plywood
- Insulation
- Paneling, Particle Board
- Plastics, Laminate
- Asbestos

- INDOOR BIOLOGICAL CONTAMINATION
 - Standing Water
 - Cooling Coils, Drain Pans
 - Mildew Spores
 - Carbon Dioxide CO₂ from People
 - Pollen
 - Mold
 - Fungi
 - Dust Mites
 - House Dust
 - Animal Dander
 - Bacteria and Viruses
 - Humidifiers (not evaporative type)

— OUTDOOR CONTAMINANTS

- Due to Infiltration
- Radon
- Soil Gas
- Methane
- Pesticides
- Auto Pollution
- Exhaust Stacks
- Due to Outside Air Intake Drawing in Contaminated Industrial Process

— INDUSTRIAL INDOOR CONTAMINANTS

- Paint
- Chemicals
- Printers
- Particulates, small solid or liquid particles such as dusts, powders, liquid droplets and mists. Examples: fly ash and asbestos dust.
- Gas Pollutants, fluids without form that occupy space rather than uniformly such as carbon monoxide or chloroform.
- Fumes, irritating smoke, vapor or gas.
- Pollutants may be toxic, noxious, corrosive erosive, inflammable, explosive or radio active.

TESTING, SETTING AND CONTROLLING OUTSIDE AIR

Correctly and consistently controlled minimum outside air volume is an absolute requirement for good IAQ and can be achieved as follows:

OUTSIDE AIR NEEDED FOR IAQ

Provide sufficient outside air to meet codes, healthy ventilation, building pressure and direct exhaust makeup air requirements. Additional outdoor ventilation air has been shown to be the single most effective method of correcting and preventing problems and minimizing complaints related to poor indoor air quality. Even if a specific contaminant is identified (such as formaldehyde) dilution may be the most practical way of reducing exposures.

Residences:	0.35 air changes per hour
	This is comparable to 15 cfm per person.
Classrooms:	15 cfm per person
Offices:	20 cfm per person
Public Restrooms:	50 cfm per person
Where smoking is permitted:	60 cfm per person

This equates to generally 15 to 20 percent of total cfm for a 10,000 cfm system in a 10,000-sq.-ft office building which may need a minimum of 1,500 to 2,500 cfm. This equates to

.15 or .20 cfm per sq. ft. of building

The amount of fresh air naturally infiltrating into a tightly insulated home without ventilation may be as low as a hundredth (.01) of an air change per hour.

CHECK OUT ACTUAL OUTSIDE AIR CONDITIONS

- 1. Measure *actual amounts* of outside air being taken in under different outside temperature conditions and building load conditions.
- 2. Check if *minimum* air volumes are correct and being held. During occupancy periods, outdoor air dampers should not close beyond the minimum position and fans and air, handling units should run continuously.
- 3. During occupancy periods, outdoor air dampers should not close beyond the minimum position and fans and air handling units should run continuously. Check if correct amounts of OA are being taken in at *maximum* OA settings.

- 4. Check if sufficient amounts of cool *outside air* are being taken in when required for cooling.
- 5. Check winter, spring, summer and fall conditions.
- 6. Adjust *damper linkages* as required and reset *controls* or change controls as required.
- 7. Check that all supply outlets in spaces are opened to their correct balance positions.

WHAT TO WATCH FOR

- 1. Don't reduce outside air volume below direct exhaust air quantities, thereby putting the building under a negative pressure and forcing air infiltration.
- 2. Maintain some building pressurization. This means bring in 1 to 5 percent more outside air than is exhausted.

Common Outside Air Plenums

If working with a common outside air plenum, put separate OA dampers on intake of each HVAC unit. The outside air plenum itself can be maintained as is.

CARBON DIOXIDE LEVELS

Measure CO_2 levels. They are a good indicator of the amount of fresh air being brought indoors and can help determine ventilation problems and needs.

ASHRAE recommends *indoor levels* of CO_2 kept below 1000 ppm CO_2 levels increase with *occupancy* because people exhale CO_2 Outdoor levels of CO_2 typically range from 320 to 350 ppm

Infrared technology now makes the diagnosis of ventilation adequacy easy. Low cost ventilation efficiency measurement systems can quickly generate a ventilation record tracking CO_2 levels over time as a ventilation index.

Today's technology provides a number of possible low cost product solutions to ventilation adequacy, including ventostats (CO₂-based ventilation controllers), desiccant wheels, energy recovery equipment, etc. Demand control ventilation is one of a number of *control strategies* that can be used.

INDOOR AIR QUALITY INSTRUMENTS AND TESTING

There are a multitude of excellent testing instruments on the market, many for very reasonable prices. *Industrial Hygienists, HVAC Balancing Technicians* and *HVAC Engineers* may already own or be familiar with many of them.

- CARBON MONOXIDE, CO ANALYZERS
- CARBON DIOXIDE, CO₂ ANALYZERS
- RADON DETECTORS, RN
- MICROBIOLOGICAL SAMPLERS
- TOBACCO SMOKE TESTING
- VOLATILE ORGANIC COMPOUND, VOC SAMPLERS
- SEMI-VOLATILE ORGANIC COMPOUNDS
- BIOAEROSOL TESTING
- AIR FLOW MEASURING INSTRUMENTS SUCH AS AIR FLOW HOODS, PITOT TUBES AND ANEMOMETERS, HOT WIRE ANEMOMETERS, ETC.
- MOLD, YEAST, FUNGUS TESTS
- IAQ TESTING KITS
- TESTS FOR LEAD AND LEAD DUSTS
- TESTS FOR NICOTINE
- OZONE TEST
- TRACER GAS INSTRUMENTATION
- NATURAL GAS TEST
- TEMPERATURE RECORDERS
- HYGROMETER FOR HUMIDITY MEASUREMENTS
- REFRIGERANT LEAK DETECTORS
- TESTING FOR BIOAEROSOLS
- INSTRUMENTS FOR FORMALDEHYDE TESTING

HUMIDITY

The ideal humidity guideline should specify a relative humidity range that minimizes deleterious effects on human health and comfort as well as reduces, as much as possible, the speed of chemical reactions of the growth of biological contaminants (which will impact human health and comfort).

Like most gaseous and particulate contaminants, relative humidity is primarily affected by indoor and outdoor sources and sinks. However, unlike other contaminants, relative humidity is also a function of air temperature. In addition to the effect of temperature, selecting the most desirable range of humidity is complicated by the conflicting effects of an increase or decrease in humidity levels. For example, while increasing humidity may reduce the incidence of common respiratory infections and provide relief for asthmatics, an increase in humidity may also increase the prevalence of microorganisms that cause allergies. Criteria for indoor exposure must balance both effects.

The bacterial population increases below 30% and above 60% relative humidity. The viral population increases at relative humidity below 50% and above 70%.

Fungi do not cause a problem at low humidity. However, their growth becomes apparent at 60%, increases between 80% and 90%, and shows a dramatic rise above 90%.

Mites require humidity for survival. Growth in the mite population responds directly to humidity levels in excess of 50%. The incidence of allergic rhinitis because of exposure to allergens increases at relative humidities above 60% and the severity of asthmatic reactions increases at relative humidities below 40%.

Most *chemical interactions* increase as the relative humidity rises above 30%, although ozone production is inversely proportional to the relative humidity.

The evidence suggests that the optimal conditions to enhance human health by minimizing the growth of biological organisms and the speed of chemical interactions occur in the narrow range between 40% *and* 60% relative humidity at normal room temperature. That narrow range is represented by the optimum zone in the shaded region of the graph.

Although keeping indoor humidity levels within this region will minimize health problems, there is probably no level of humidity at which some biological or chemical factor that affects health negatively does not flourish.

PARTICULATE CONTAMINANTS

PARTICULATES

Indoor air particulates may come from outdoor sources or indoor sources. Particulates are usually categorized according to size:

- 1. *Respirable,* less than 5 to 10 micrometers diameter which can lodge in the lungs and cause health problems.
- 2. Nonrespirable, greater than 5 to 10 micrometers diameter.

Typically reported range for total particulates of all sizes is 300 to 1000 micrograms per cubic meter averaged over 24 hours, with maximum readings of 600 micrograms per cubic meter. The indoor/outdoor ratio typically varies from 0.3 to 0.4. The following standards have been established:

TOBACCO SMOKE

Hypersensitivity to tobacco smoke is fairly common, often resulting in irritation of the eyes and respiratory tract.

Tobacco smoke consists of solid particles, liquid droplets, and gases, and constitutes more than 2,000 specific materials. Like many pollutants, it can be absorbed by the body unexpectedly. A study in Britain revealed traces of tobacco substances in the urine of a test group of nonsmokers in 85 percent of the cases, despite the fact that half of the group's members were unaware that they had been exposed to a low-level dose of tobacco smoke.

FUNGAL SPORES

Fungal spores are a broad class of biological organisms that can function as potential allergenic agents. Those most commonly found indoors are associated with mildew and decay and can be found in air conditioning systems. Fungal spores can also originate outdoors, where their numbers are subject to seasonal variations. Spore concentrations outdoors rarely exceed 1 spore/cc, and normal dwellings are likely to have lower concentrations.

FIBERS

Fibers can include several types of mineral or organic fibrous material. The most important of these from a health standpoint is asbestos, and only this type of fiber is considered here. Asbestos can occur in many forms, including amosite, chrysolite, and crocidolite. It may be found indoors through its use as a construction material (insulation), although this use has been severely curtailed in recent years.

Asbestos fibers, when lodged in the lung, can cause asbestosis (a disease of the lungs) and mesothelioma (a cancer that attacks the lining of the chest cavity or abdomen).

OSHA is using 0.1 fibers longer than five micrometers per cubic centimeter as the level above which abatement action must be taken.

The following standards have been established:

OSHA	2.0 fibers/cc (8-hour TWA for industrial exposure)
ACGIH	.5 to 2.0 fibers/cc (8-hour TWA for industrial exposure)
ASHRAE	lowest feasible level

PATHOGENS AND ALLERGENS

Pathogens are particulates that cause disease. Allergens, similarly, induce allergies. Buildings harbor both in the form of bacteria, viruses, mold spores, pollens, insect parts, and people and pet materials. Often, these particles adhere to other particles, primarily dust, and collect unseen in carpets, fabrics, duct systems, humidifiers, fan coil units, cooling towers, etc.

Exposure to such contaminants can induce a variety of allergic reactions and illnesses: cold, flu, and several forms of pneumonia, including Legionnaires' disease. Tuberculosis, measles, smallpox, *staphylococcus* infections, and influenza are known to be transmitted by air.

BIOLOGIC AEROSOLS

Increasing attention to biologic aerosol components of indoor air has resulted from investigations that have shown that airborne concentrations of viable organisms frequently correlate with physiologic responses and complaints. Symptoms including pulmonary manifestations, muscle aches, chills, fever, headache and fatigue have been attributed to biologic agents.

Disease has been attributed to thermophilic actinomycetes, non-pathogenic amoebae, fungi, and *Flavobacterium spp*. or their endotoxins.

FORMULAS

- *TLV:* Stands for threshold limit value. It's the time-weighted concentration that normally healthy adults can withstand for eight hours a day (40 hours a week) without adverse effects. It is usually stated in parts per million (ppm).
- *TLV-STEL:* The maximum concentrations to which workers can be exposed for up to 15 minutes.
- *TLVC:* Is the level that cannot be exceeded even instantaneously.

Effective temperatures are sometimes used to express the effect that dry-bulb temperature, wet-bulb temperature, and air velocity have on comfort. It is a single-number index.

wbgt: Is the wet-bulb globe temperature, which includes the radiant effect.

DILUTION AIR

$$cfm = \frac{403 \times SG \times 10^6}{MW \times TLV} \times pints/min \times k$$

Where:

SG = specific gravity

- MW = molecular weight
 - K = a safety factor that varies from 3 to 10 depending on the toxicity of the material and the effectiveness of the ventilation. This is difficult to estimate.
 We will use two values, K1 (the value for toxicity) and K2 (the value for ventilation), which together add up to K.

FIRE AND EXPLOSION

 $cfm = \frac{403 (S.G.) (100) (C) (pints/min)}{(MW) (LEL) (B)}$

Where:

- LEL = Lower explosive limit (given as a percentage) which is expressed in parts per hundred.
- MW = molecular weight of liquid
 - SG = specific gravity of liquid
 - C = safety factor, which depends on the percentage of the LEL necessary for safe operation because concentrations are not uniform. For continuous ovens, C=4, and for batch ovens, C=12.
 - B = a constant that takes into consideration the fact that LEL decreases at elevated temperatures. B=1 at temperatures less than 250°F, and 0.7 at temperatures equal to or more than 350°F.

INDOOR AIR QUALITY REPORT

Job			Dat	e
Location			Lon	gitude
VENTILATION				
Building Under Pressure:	🛙 Positve	🛛 Negativ	e 🛛 Neutral	
Building Pressure Readings, Inc	hes S.P.: Inside		Outside	No. of Occupants:
Filters: Type	Condition		-	
r			1	
	Rated CFM	Actual CFM		
			CFM Outside Air P	er Person
Total Building Outside Air			Air Changes Per H	lour
Total Building Exhaust Air			, e	
Total Building Return Air				
Total Building Supply Air				
Exfiltration			1	
			<u></u>	
RELATIVE HUMIDITY RH REA	ADINGS			
<u> </u>				
INDOOR CONTAMINANTS				
BIOLOGICAL CONTAMINAN	TS			
INDUSTRIAL INDOOR CONT	AMINANTS			
			. <u>.</u>	· · · · · · · · · · · · · · · · · · ·

Figure 3-1. Above is an overall report for indoor air quality pressure, ventilation and other contaminant tests and recording.

Job doL					Dat	e		
Location					Long	jitude		
Size of Build	ding, Sq Ft				No	. of Floors	No. of E	lldgs.
Building Un	der Pressur	e: 🗆 Neg	ative	Positive		eutral		
Pressure Re	eadings: Ins	side Out	side	Floor	Walls: N	S	E	w
Time: 🗆	Winter			er DF	all 🗂 Da	aytime l	□ Night	
Outside Ter	nperature _	Insi	de Tempera	ture	🛛 Occup	ied 🗆	Unoccupied	
			D Outsid	le Air ⊡Rec	irc Air	🛛 Exhaust A	Air¹ ⊡Supp	ly Fan²
System Tag	System	Location In Building	Maxim	um CFM	Minimu	IM CFM	Rando	m CFM
-3	bystem	in Denaing	Rated	Actual	Rated	Actual	Rated	Actual
		1						
							1	
						1		
					<u> </u>	<u> </u>	!	
							1	+
				- <u> </u>	1	<u> </u>	 	
		1		+			1	
				1				
						1		1
	1							
		1	1		1		1	
			· · ·		<u> </u>			
		<u> </u>	<u> </u>				1	
	<u> </u>	<u> </u>	1				1	
		1	<u> </u>					+
			<u> </u>					1
Door, Wind	low, Building	g Opening Condi	tions				<u> </u>	
Stack Effect	:t				<u>.</u>			
Wind Effec	t							
Combustio	n Effect							
								<u> </u>
Remarks _			<u> </u>					
<u></u>								
1: Exhaust	air to outsid	de 2: Sup	ply fan discl	narge CFM				

BUILDING VENTILATION AND PRESSURE REPORT

Chapter 4 Engineering Calculation Procedures and Forms

This chapter has the engineering calculation forms for heat loss and cooling load calculation for either peak loads or seasonal totals.

It also has a summary sheet for listing the peak heating and cooling loads and cfm per area.

HEAT LOSS CALCULATION FORMS

The original heat loss calculations and capacity HVAC equipment chosen at the time the building was constructed may have greatly changed over the years and new heat loss calculations may be required, based on the actual current conditions' in order to end up with a reliable energy retrofit program.

Lighting loads may have been reduced, insulation added, thermal windows added, and temperature settings changed, etc. since the building was built. The old figures may no longer be valid.

New calculations based on the current conditions are required for a valid audit and energy conservation program.

- 1. The heading on the heat loss calculation sheet describes the building, its size, design temperatures, etc.
- These lines list all the components involved in the heat loss calculations: Roofs Floors Walls Windows, etc.
- 3. The middle columns are for the dimensions, sq. footage, U factors and temperatures differences.
- 4. Multiply the *square feet* times *the U factors* times *the temperature difference* for the total Btuh for peak load per hour.
- 5. Use appropriate formulas for equipment, motors and ventilation.
- 6. The far right column lists the seasonal hours involved.
- 7. The total peak Btu's are summed at the bottom.

	PEAK PER HR	🖾 SEASONAL	Ø	EXISTING	NEW	
Building SU	BURBAN OFFICE BUIL	DING			Date 11-18-19	85
Location				La	titude 41	
Type Building O	FFICE AND LABS	S	tories	1	When Built 196	7
Sq Ft Area 90	0,000		Cubic	Ft of Sp	ace 1,260,00	0
X Calculation f	or Whole Building	For P	artial A	rea	••••••	
Budget Load: Sq Ft	90,000	x BTUYR/S	qFt 7	8,500	= 7,065 Mill B	TUYR
Outside Design:	DB -10 W8	 Avg OA T	emp.	35 W	nter Hours 4	,800
Inside Design: DB	(day) 74	RH	DB(nig	ht)		
*****************	*******************	*************	- 		*****	1122327
ITEM	DIMENSIONS	SQ FT	IJ	TEMP DIFF	BIU: Per Hour Seasonal	SEASONA HOUR
ROOF OR CEILING	360 X 250	90,000	0.110	39.00	1,853,280,000	4,800
FLOOR	360 X 250	90,000	0.100	16.00	691,200,000	4,800
GLASS	950 X 7	6,650	1.100	39.00	1,369,368,000	4,000
DOORS						
WALLS	1220 X 14	10,430	0.330	39.00	644,323,680	4,800
COLD INSIDE WALLS				*******		
VENTILATION	1.43 AC/HR CFM=	30,000	1.080	39.00	6,035,280,000	4,800
DUCT LOSSES						
GROSS TOTAL HE	AT LOSS	***********		*******	10,623,451,680	* *******
HEAT GAINS; LITES	4W/SQ FT	90,000	4.000	3.416	3,074,490,000	2,500
PEOPLE	No. People ⇒	400	250		200,000,000	2,000
OFF. EQUIPMENT		25	2,550		127,500,000	2,000
COMPUTERS		5		3416.00	149,620,800	8,760
TOTAL INTERNAL	. GAINS	************			3,551,520,800	
NET TOTAL BUILDING	NEAT LOSS	************			7,071,930,880	78,57
INPUT TO HEAT	ING EQUIPMENT. of	ficiency =	.60	*******	11,500,000,000	
BIUH = Sa Ft x 1	J x Temp, Diff.	BTU/YEAR #	Sq Ft x	testesa U K Ava	femp, Diff, x Win	ter Hour
				* צ'עיזט	Q FT/YEAR	

Figure 4-1. Sample Filled Out Heat Loss Calculation Form

COOLING LOAD CALCULATION FORM

The original cooling load calculations and capacity HVAC equipment chosen at the time may have greatly changed over the years, and new cooling load calculations may be required based on the actual current conditions, in order to end up with a reliable energy retrofit program.

Lighting loads may have been reduced, insulation added, thermal windows added, temperature settings changed, etc., since the building was built. The old figures may no longer be valid.

New calculations based on the current conditions are required.

- 1. The heading on the cooling load calculation sheet describes the building, its size, design temperatures, etc.
- The lines below list all the components involved in the cooling loads calculations: Roofs Floors Walls Windows, etc.
- 3. The middle columns are for the dimensions, sq. footage, U factors and temperatures differences.
- 4. Multiply the *square feet* times *the U factors* times *the temperature differences* for the total Btuh for peak load per hour.
- 5. Total peak Btu's and tonnage are summed at the bottom.

	🖾 PEAK	PER HR	SEASO	NAL	🛛 E	K IST ING	🗌 NEW		
Building	SUB	URBAN OFFIC	E BUILDIN	G			Date 11-	18-1985	
Location				L	atitude	41	Peak Load, H	R, MO:	
Type Buil	ding 0	FFICE AND L	ABS	St	ories	1	When Built	1967	
Sq Ft Are	a 9	0,000			Cubic F	t of Spac	e 1,260,	000	
X Calc	ulation f	or Whole Bu	ilding		For Par	tial Area		********	
Building	Load: Sq	Ft 90,000		x S	q Ft/Ton	270	=	333 Tons	
Outside D	esign:	D8 95 W	B 75	Avg OA	Temp. 3	5 Sum	mer Hours	900	
Inside De	sign: DE	3(day) 74		RH		 D8(night)	74		
ITEM (Orient.)	DIMENSIONS	 50	 FT	U or FACTOR*	TEMP DIFF	SENSIBLE BTUH	TONS	LATENT BTUH
ROOF OR C	EILING	*****	90	,000	0.110	20.00	198,000	16.50	*******
GLASS	EAST		1	,500		15.00	22,500	1.88	
(Solar)	SOUTH		2	,160		50.00	108,000	9.00	
	WEST		1	,500		15.00	22,500	1.88	
GLASS	SOUTH		5	,160	1,130	20.00	116,616	9.72	
(Conduc	tion)						•••••	0.00	
WALLS	E,W,N			,040	0.167	20.00	30,194	2.52	
(Conduc	tion)		2	,880	0.167	50.00	24,048	2.00	
LIGHTING			90	,000	4	3.416	1,229,760	102.48	
PEOPLE, N	10.	(NO.)		400	250	250	100,000	8.33	100,00
OFF. EQUI	IPMENT	MOTORS (HP)		25	2,550		63,750	5.31	
COMPUTERS		(KW)		10	3,416		34,160	2.85	
KITCHEN							•	0.00	
VENTIL. A	AIR, Sens	1.43 AC/HR	30,000	CFM	1.08	20.00	648,000	54.00	
VENTIL. A	AIR, Lat. . COOLING	1.43 AC/HR LOAD,	30,000	CFM	0.010 SENSI	4,840 BLE	2,597,528	0.00 216	1,452,00
BTUH = Sq	Ft x U x	Temp. Diff.			LATEN		1,552,000	121	********
* U, CLTD, CLTD = (Te	, CLF, KW emp diff)	, HP, WD - (Daily Ra	ange + 14)/2	GRAND	TOTAL	4,149,528	337	267*

Figure 4-2. Sample Filled Out Cooling Load Calculation Form

PEAK HEATING, COOLING AND CFM PER AREA

This very valuable form shows the peak heating and cooling loads for the main areas in the building and the amount of cfm in each area.

The form can be used to examine the original design or what the current loads actually are, in order to analyze and find areas of energy waste. Then do calculations based on energy savings proposals.

		X131100		NEW				
BUILDING SUBURBAN OF	FICE BUILDI	NG				DATE	11-18-19	85
	TOTAL S	Q FT 9	0,000	AV8	RAGE CF	M PER	TON	400
***************************		COOL ING	LOAD	HEATIN	G LOAD	CEM		*******
AREA	SQ FT OF AREA	SQ FT PER TONS	TONS	BTU PER SO FT	мвн	CFM PER SO FT	CEM	DIREC EXT. CFM
INTERIOR OFFICES, EAST	31,275	330	95	25	782	1.20	37.909	*******
INTERIOR OFFICES, WEST	31,275	330	95	25	782	1.20	37,909	•••••
PERIMETER OFFICES, EAST	3,489	250	14	60	209	1.60	5.582	••••••
PERIMETER OFFICES, SOUTH	4,950	225	22	60	297	1.60	8,800	••••••
PERIMETER OFFICES, EAST	3,489	250	14	60	209	1.60	5,582	
CONFERENCE ROOM, EAST	450	250	2	60	27	1.60	720	1,200
CONFERENCE ROUM, WEST	450	250	2	60	27	1.60	720	1,200
VESTIBULE	225	100	2	35	8	4.00	900	
COMPUTER ROOM	3,600	140	26	35	126	2.90	10,286	
MENS TOILETS	224	400	1	53	12	1.00	224	225
WOMENS TOILETS	224	400	1	53	12	1.00	224	225
WOMENS LOUNGE	224	400	1	53	12	1.00	224	225
HALLWAY	300	400	1	35	11	1.00	300	•••••
BUILDING ENGINEER	225	400	1	35	8	1.00	224	•••••
STORAGE ROOM	1,800	650	3	35	63	0.61	1,108	••••••
MECHANICAL ROOM	4,800	400	12	35	168	1.00	4,800	•••••
KITCHEN	1,000	1,43	7	60	60	2.80	2,797	5,400
CAFETERIA	2,000	150	13	35	70	2.70	5,333	
TOTAL	90,000	290	310	31	2,883	1.37	123,642	8,475

Figure 4-3. Sample Filled Out Peak Heating, Cooling and CFM Per Area

This page intentionally left blank

Chapter 5 HUAC Cost Estimating Procedures and Forms

The forms in this chapter will make estimating for HVAC work more accurate, clearer and complete. They will help save time and money and avoid errors.

Forms are an indispensable aid and guide to efficient estimating:

- They help control the proper sequence of estimating work.
- They continually remind you of what information is needed.
- They lead you logically through calculations.

As a result your bids will be more complete and correct.

For those who normally are not directly involved with HVAC work, the forms will help to clarify what's involved in HVAC estimating.

The forms are excellent for checking change orders too.

REQUIREMENTS OF A GOOD SHEET METAL ESTIMATOR

Solid estimates are produced by competent and reliable estimators. Good sheet metal estimators are developed through the following background of knowledge, procedures, skills and abilities:

Estimating Principles and Procedures

- 1. Estimators must follow sound efficient *procedures* for preparing estimates, such as:
 - a. Become thoroughly *familiar* with the project, the types of systems and ductwork involved in the scope of work, before starting a detailed takeoff.
 - b. Be familiar with *budget* estimating: HVAC costs for different buildings based on cost per sq. ft. of building or costs per ton of air conditioning; amount of ductwork per sq. ft. of building or by the average size; cost of ductwork per linear ft, per lb or per sq. ft.
 - c. Know the *major divisions* of the estimate:
 - Equipment Ductwork Duct Accessories, Sheet Metal Specialties Special Labor Sub-Contractors End of Bid Factors (such as sales tax) Markups for Overhead and Profit
 - d. Be familiar with *detailed scope* of what is required in a sheet metal estimate.
 - e. *Highlight* drawings before the takeoff.
 - f. Follow systematic overall *procedure*

Study the plans and specs Send out quotation requests Highlight drawings Make takeoffs and extensions Summarize Recap and markups

- g. Do constant systematic *checking* on each part as you go along and overall at the end. Double check everything.
- 2. Estimators must have the ability to *read blue prints*, recognize symbols, types of ductwork, equipment and systems, etc.

AIR DISTRIBUTION SYSTEMS

3. Estimators must be familiar with the different *types of HVAC* systems such as:
Low Pressure Constant Volume Systems
Single Zone, Reheat Coils, Multi-Zone
High Pressure Constant Volume
Dual Duct, Induction, Reheat Terminal
Variable Air Volume
Cooling Only, Cooling/Reheat Terminals,
Fan Powered, Dual Duct
Induction, Multi-Zone
System Powered, Riding Fan Curve
Damper Terminal By-pass
Exhaust Systems
Return Air, Toilet
Kitchen, Lab, Industrial

They must not only recognize the various types of systems on plans, but must know all of the *components* required in them, whether shown on the plans or not.

4. They must know *duct pressure* and velocity ranges:

Duct Pressure Ranges: 1/2 inch, 1 inch, 2 inch 3,4,5 inches 6 inches and up

Velocities 0 to 2,000 fpm. 2,000 fpm. and up etc.

- They must know about different ductwork system configurations such as: Single Duct Dual Duct
 - Multi-Zone Loops Plenum Ceilings
- 6. They must have some familiarity with air distribution system *design*, know recommended air speeds, pressure drops and duct sizes plus sizing and selection of equipment.

TYPES OF DUCTWORK

7. Sheet metal estimators must be familiar with the different *types of ductwork* and of their correct construction.

Rectangular Galvanized: Low, Medium, High Pressure Low Pressure Round Ductwork; Flues; Flexible Tubing Spiral Pipe and Fittings Fiberglass Ductboard Light Gauge Aluminum, Stainless, PVS with cleats, Pittsburghs Heavy Gauge Metals: Black Iron, Stainless, Aluminum, Galvanized, Corten, etc. PVC, FRP, Sunstrand

- 8. They must know the correct *applications* of different types of ductwork materials to various systems:
 - Low, Medium, High Pressure HVAC Systems General Exhausts Fume Exhausts Heat Exhaust Systems Chemical Exhaust Systems Abrasive Material Systems

DUCTWORK CONSTRUCTION

9. Estimators must be familiar with the different types of *connections* for each type of ductwork and of their correct application to different types of systems.

Cleats: drive, flat S, bar, reinforced bar Transverse: TDC, TDF 4 Bolt Connections Angle Flange, Van Stone Bent Angle Flange Butt Welded Slip, Couplings

10. They must be familiar with different types of *seams* used for constructing duct-work.

Pittsburgh Snaplock, Lockseam Welded

- 11. They must be familiar with the different *gauges* used for ductwork and specialties. Commercial Galvanized 26 to 16 gauge Residential Galvanized 30 to 18 gauge Heavy Gauge Industrial 18 gauge to 1/2 inch thick Fiberglass Ductboard, 1 inch thick PVC, 1/4," 3/16" inch thick
- 12. They must be familiar with the different types of *reinforcing* used on ductwork. Angles Channels Crossbreaking Tie Rods
- 13. They must be familiar with the different types of *fittings* used in air distribution systems and their correct applications.

Elbows:	Radius Throat, Square Throat
	90, 45. 22 1/2 degree etc.
Transitions:	Equal Taper, FOT, FOB, sq. side etc.
Offsets:	Ogee, Square
Wye Fittings	
Tap In Tees	

Estimating Materials and Labor

- 14. They must know the various *methods* of estimating ductwork.
- Sheet metal estimators must know how to estimate ductwork *materials*.
 Takeoff and calculate surface sq. footage of material based on size, length, etc.
 Add waste and seam factor
 Multiply by weight per sq. foot
- 16. They must be familiar with different waste and *allowance factors* for seams, cleats, hangers, hardware, etc.
- 17. They must know the methods of estimating ductwork *labor* such as:

Per PiecePer BatchPer PoundPer Break Down of Component PartsPer Sq. FootPer Linear Foot

They must know *sources of labor* such as the Wendes Sheet Metal Estimating Manual, cost records, etc.

CORRECTION FACTORS

18. They must apply *labor multipliers* with reasonable accuracy whenever needed to adjust for conditions etc.

5th floor takes 10 percent longer 30 ft. high ductwork takes 20 percent longer Duplicate fittings go 33 percent faster

ACCESSORIES

 He must be familiar with the various duct *accessories* and *sheet metal specialties*. Turning Vanes Air Foil, Single Skin Splitter Dampers Single and Multiblade Dampers Access Doors

FABRICATION AND INSTALLATION PROCEDURES

20. They must be familiar with *fabrication procedures* and machinery and how those affect labor and overhead margins. They must be familiar with plasma cutters, coil lines, seam machines, press breaks, rollers, etc.

Plasma cutters cut overall fitting labor in half Duct coil lines reduce straight duct labor about 70 percent

21. Sheet metal estimators must be well versed in ductwork *installation procedures*, in the operations involved in installations, with hand tools, scaffolding, Vermets, and scissor hoists.

Pricing Equipment

- 22. They must know *sources of pricing* on accessories and equipment, supplier, price catalogues, suppliers for quotations, etc.
- 23. They have to know about *small ventilation equipment:* Grilles, Registers, Diffusers Multiblade Dampers, Back Draft Dampers Fire Dampers, Access Doors

- 24. They must know about sheet metal *specialties* such as: Sheet Metal Housings, Walk Through Doors Belt Guards, Drain Pans, Coil Stands Coil Blankoffs
- 25. They must know about major HVAC *equipment*. Roof Top Units, Air Handling Units Fans, Filters, Louvers

WAGE RATES, UNIONS, JURISDICTIONS

- 26. They must know about *wage rates*, union fringe benefits, federal, state and local taxes, insurance, etc.
- 27. They must be knowledgeable about union, trade and local labor jurisdictions.
- 28. They must be familiar with building codes.

OTHER **T**RADES, **T**YPES OF **B**UILDINGS

- 29. They has to be familiar with *other trades* such as piping, insulation, temperature control, electrical and excavation.
- 30. They must be familiar with all types of *buildings*, commercial, institutional, industrial, their general sizes, layout, etc., and with the sequence of general construction work.

MARKUPS

31. Sheet metal estimators must be generally familiar with financial statements such as profit, loss and balance sheets. They must be able to determine the correct markup for overhead and profit for their company and for the particular job they are bid-ding.

They should understand how overhead costs are *pro-rated* onto direct material and labor costs for different projects, for different levels of sales and overhead costs, for different ratios of material to labor etc.

Skills, Traits Required

32. Estimating requires a host of skills, mathematical, mechanical, reading, writing, visualizing and drawing. It requires being methodical, analytical, strategical and realistic.

33. It absolutely demands that estimators be *reliable*, that They be thorough in their understanding of the project, of its scope, in takeoffs, interpretations, extensions, summaries, recaps.

Thus, knowledgeable, proficient and reliable estimators as described above will be able to produce complete and accurate estimates, which in turn become the required foundation blocks of successful contracting.

EFFICIENT ESTIMATING PROCEDURES

The following diagrammatic procedure is an efficient, systematic, organized, time saving approach for controlling the preparation of your bids.

- It promotes efficiency You get your bids **done faster**. You avoid duplications, and redoing of work, and you get things done simultaneously.
- You are more likely to get your bids **done on time** and thereby allow time for proper checking and solving of problems. You avoid hectic 11th-hour scrambling.
- **It provides framework** for planning and scheduling estimating work realistically and effectively.
- Promotes **more complete and accurate bids**, thorough takeoffs, accurate extensions and reliable pricing.
- Through the systematic ten-phase pyramidal procedure you will **produce more estimates**, reduce errors and get more jobs.

Preliminaries

This first phase of the procedure is the most important step of all and it sets the ground work for a proper bid.

The preliminary surveys are a systematic, scientific, highly organized approach to becoming **thoroughly familiar** with a job before preparing an estimate and getting into the quagmire of details.

In the preliminary survey you study the plans, specs and other documents, to become familiar with what is involved in the project, what the scope is, what is included and not, what the approximate budget price is, the size of the building and what rough quantities of metal and equipment there are.

You determine if there are alternates or addenda and what the bidding instructions are.

You become familiar with the areas, floors, systems, equipment, ductwork, conditions, specialties, subs, etc.

You evaluate the competition, AE, generals, agencies and inspectors involved, cash flow, your work load, the construction schedule, your ability and experience to do the job, your competitive stance, and amount of time to bid the job. They you determine intelligently and realistically if you should bid the job or not.

Finally, you use the preliminary survey as your note sheet and checkoff list.

Part of the preliminary works is to notify subcontractors and equipment suppliers from whom you will be needing a quotation for the particular job. Give them the date it is needed so they have adequate time to prepare and can work simultaneously.

Also, make arrangements for any forms needed, pre-qualifications, written proposals, bid bonds, bid deposit checks, etc., so that they are ready at the bid time.

QUANTITY TAKEOFFS AND EXTENSIONS

Before beginning the takeoff of ductwork and equipment, thoroughly study the plans and specs and mark and color the drawings. Highlight different types of ductruns, lined ducts and insulated ducts in color as required to distinguish one from the other.

Locate and mark alternate and addendum areas and conditions that require labor adjustments. Take off ductwork first, then specialties and finally equipment.

SUMMARY SHEET

Extend materials, costs, labor, etc. on the takeoff sheet up and transfer totals of categories to summary sheet. List everything on the summary sheet, grouping items in the major categories; equipment to start with, then ductwork, specialties, special labor and minor subs.

Price out raw materials, extend shop and field labor and total the labor columns.

QUOTATIONS

Call for the quotations that have not come in yet. Make sure they have essential information on them such as quantities, types, manufacturers, accessories, exclusions, delivery; do they meet plans and specs, and are materials, sizes, performance correct?

Organize and compare the quotations and select the lowest acceptable ones. Plug numbers into summary sheet and total material column.

Make Thorough Check

Make a thorough check now of everything you have done to this point. Check all takeoffs, extensions, summations, transferences, pricing, labor, etc. Have someone else study project and review your estimate. Reread plan, specs, notes, quotes, etc. Have someone else check the math.

RECAP

Transfer correct totals from summary sheet to the recap sheet. Price out labor and summarize subs. Put in end-of-bid factors such as sales tax, bonds, material and labor increases. Determine the proper markup for overhead and enter. Add everything together and add the desired profit to it. Check over recap carefully because errors can be costly.

BID SUBMISSION

Submit a proper, qualified bid noting inclusions, exclusions, and exceptions to plans and specs.

ESTIMATING PROCEDURE DIAGRAM FOR PIPING AND SHEET METAL WORK

Figure 5-1. The above diagram shows a complete, fast and efficient procedure for preparing sheet metal estimates. The diagram shows the correct sequence of operations and the main areas of work. It follows the critical path method showing the sheet metal estimator, HVAC equipment supplier and sub-contractor all preparing their own portions of the estimates at the same time and all coming together for a total bid price within the bid time frame.

SCOPE OF COMPLETE SHEET METAL ESTIMATE

DUCTWORK

AIR HANDLING EQUIPMT HVAC Units

Air Handling Units Coils, Filters, Dampers Roof Tops, Economizers Make Up Air Heat Recovery Fans Centrifugal Vent Sets Tubular Industrial Propeller Isolators Inlet Vanes Drives, Motors Access Doors **Roof Equipment** Roof Exhaust Fans Gravity Vents Louvered Vent Houses Roof Curbs Filters FG Throw Away Washable Mesh Rollomatic Electro Static Bag Absolute Charcoal Air Diffusion Eqpmt Grilles Diffusers, Slot Diffusers Linears, Troffers Extractors **Terminal Eqpmt** VAV Boxes Dual Duct Reheat Induction **Industrial Exhaust Eqpmt** Auto, Welding Exhausts Dust Collectors Scrubbers Paint Spray Booths **Dampers** Manual Motorized Fire, Smoke Electrical Starters Heating Coils Factory Fab. Housings Sound Attenuators Thermometers

Galvanized Low, Medium, High Pressure Fiberglass **Round Oval HVAC** Spiral Flex Tubing Furnace Pipe Flues **Industrial Exhaust** Black Iron Stainless Steel Aluminum Blow Pipe FRP PVC PVC Coated Galvanized Metal Flex. Tubing

SHEET METAL SPECIALTIES

Duct Accessories Turning Vanes Splitter Dampers **Bracing Angles** Cleat, Hangers Trapeze Angles Spanning Angles Crossbreaking Seal Ducts Paint Ducts **Specialties** Flexible Connections Belt Guards Hsg. Access Doors Hoods-Kit Lab, Shop Stands, Platforms Drain Pans Blankoffs, Safeoffs Roof Hoods Screens, Grating Expanded Metal Perforated Plates Water Elimination Lead, Cork, Foam Glass Lining E.G. Flexible Hardboard Cement and Pins **Sheet Metal Housings** Panels Angles

SPECIAL LABOR

Shipping Field Measuring Drafting Testing and Balancing Leak Testing Temporary Heat Set Up and Clean Up Chases and Sleeves Existing Buildings Removal Cut Openings, Patch Protection

SUB CONTRS, RENTALS

Testing and Balancing Insulation Temperature Control Cranes, Hoists Concrete Pads Scaffolding Refrigeration, AC Heating Electrical Cut Openings, Patch Excavate, Backfill

END OF BID FACTORS

Sales Tax Permits Travel Pay Room and Board Wage Increases Material Increases Premium Time Alternates Contingencies Clean Up Charges

MARKUPS

Overhead Profit

HVAC ESTIMATE

	Date
Job	
Bid	Time
Place	
Estimator	
Architect	Phone
Engineer	Phone

Figure 5-2. Coversheet For HVAC Estimate Report

JOB DESCRIPTION AND BUDGET COSTS

The purposes of this form are:

- 1. To budget estimate prices to determine if it should be bid or not and as a check price against the detailed estimate.
- 2. To approximate heating, cooling and cfm loads and roughout ductwork weight for check on detailed ductwork takeoff.
- 3. To record the key aspects of the types of systems involved.

100 Zay	res					Date F	eb. 9	1987
Location	135 Buss	2	Rd.		Dis	tance	10	Miles
Total Project	Costs S 2.24	0,0	00 va	lume of E	Building			Cu Ft
Total Area 🗾	0,000 _{Sq}	Ft,	Area,		_Sq Ft	Areaz		Sq Ft
			BUDGE	T COS	rs			
		cos	T/SQ FT BL	DC TO	TAL	COST/1	ON	TOTAL
Total HVAC		6.	3.00	240	000	s 1,05	3	\$240,00
Sheet Met	al	5	.60	s 48,	000	s 210	2	\$
Piping		5	. 07	<u>s 5</u> ,	400	s 2.	3	\$
Equipment		s	2.14	s 171	000	s 75	4	\$
Insulation	n	5	.17	\$ 13.	300	s 5	8	\$
Temperatu	re Control	<u>s</u>	.03	<u> </u>	400	s 10)	\$
Electric		<u>s</u>	<u> </u>	5 -		s	•	s
						<u> </u>		<u></u>
			DESIG	N LOAI	os			
	Area				Area 2			
	Factor		Tot	tal	F	actor		Total
Cooling	350 Sq Ft	/Ton	22	8 Tons		Sq Ft/Ton		To
Cooling	24 BTU/S	q Ft	2.720,0	000 BTU	 	BTU/Sq Ft		BT
Heating	32 BTU/S	q Ft	2,560,	000 BTU		BTU/Sq Ft		BT
Supply Air	1.1 CFM/S	q Ft	28,	000 CFM	ļ	CFM/Sq Ft		CF
Duct Weight	.30 LBS/S	q Ft	24,	000 LBS		LBS/Sq Ft		LB
	1				I			
SYST	EM DESCR	RIPT	ION			KEY P	LAN	
Heating Ga	s			1				
Cooling DX]				
SZ DHZ S	Constant Vol	me	O VAV]				
Duct Pressure	PLP DYP		IP]				
Return Air Me	thod Duct		il. Plenum					
Type Outlets	Diffuse	rs						
Type Perimete	r Heat 🖬 Air		Baseboard			· · · · · · · · · · · · · · · · · · ·		
Temperature C	ontrol Elec	tri	ic	No.	of Buil	dings	St	ories
	π			_			_	5.
CONSTRUCTION:	Glass Iner	m	spane	Cross	Area_	Sq Sq	Ft; l	
Exterior Wall	Is Id Mas		-J-J-cl	Gross	Area 1	SO OOO -	Ft; (<u> </u>
Roof <u>A</u> INS	VILLION, N	ICI	LI DECI	 Gross	Area 🦲	50,000 Sq	וד: ו	
Remarks				 i				
Mandes Engineeri	an and Contractio						8	180 Form EST

Figure 5-3. Sample Filled Out Job Description and Budget Costs Form

BID CHECKOFF SHEET

The purpose of the bid checkoff sheet is to make organized notes of everything required on a bid as a guide in preparing the estimate and then as a checkoff list to make sure everything is covered at the end of the bid.

The form is divided up into the major categories of an estimate, equipment, ductwork, piping, specialties and accessories, special items, subcontractors, rentals and end-of-bid items.

The form also covers other pertinent items in the bidding and pricing process and items not included in the bid.

BID CHECK	OFF SHEET
Total HVAC	et Metal OPiping
100 Layres Discount Stor	
Location $2200000000000000000000000000000000000$	EL 20 000 Stories
Budget Estimate	Buildings
FOUTPWENT	
6 Poot Ton Units 38 Tons 19	Galvanized Low Ressure SMACNA
Gas DX Economizers	BI Kitchen Exhaust, 166a.
<u> </u>	
2 Roof Exhaust Fans	
2 Prop Fans with Shutters	
20 Diffusers	
7 Registers	
20 Egg Crate Grilles	
3 Grease Filters	
	Tuni
	Califian Danas
	Spurcer vampers
· · · · · · · · · · · · · · · · · · ·	
	INSULATION
	1"Thick, 11/216 Lining
	Supply Ductwork
	· · · · · · · · · · · · · · · · · · ·
	-
Wendes Engineering and Contracting Services	7/80 form EST 1

Figure 5-4. Sample Filled Out Bid Checkoff Sheet Form

SPECIAL LABOR	CORRECTION FACTOR AREAS
Cartage	Ducts 17ft High
Shop Drawings	· J
Field Sketching	
Y Testing and Balancing	ALTERNATES
Leak Testing	
Service	
] Temporary Heat	
	ADDENDUMS
	No. 1, Feb. 26, 1987
Engineering	
Sleeves	
] Removal	CONSTRUCTION SCHEDULE
Property Protection	12 Months
Cut Openings and Patch	
SUB CONTRACTORS AND RENTALS	
Insulation	BIDDING PLAN AND SPEC NO.'S
Temperature Control Electric	MI-M3
] Piping	Section 15
] Electrical	
Witchen Hood Fire Protection System	m NOT INCLUDED
Concrete Pads	Power Wiring
Y Cranes	J
Testing and Balancing	
Excavating and Backfilling	
Cutting and Patching	
END OF BID ITEMS	
Sales Tax	
Permits	
Bid Performance	
Travel Pay	
Room and Board	
Wage Increases	
Material Price Increases	
] Premium Time	
Contingencies	
ndes Engineering and Contracting Services	
-	

Figure 5-4. Sample Filled Out Bid Checkoff Sheet Form (Cont'd)

This page intentionally left blank

QUOTATION CALL LIST AND PRICE COMPARISON

The quotation call list is an organized written guide for notifying equipment suppliers and subcontractors that you want quotations from them on the project being bid and for making price comparisons after the quotations come in.

, Zouro's D	Discount St	tore	Due Date Fo	Ь.	18 1	98)
00 <u>2441 ES D</u> 135 P	Busse Road		Estimator			
schitest/Engineer			Date		· · · ·	
a currect/ pukineet	······································				1	
ITEM	MANUFACTURER	SUPPLIER	PHONE	QTY	PR	ICE
Roof Tops	McQuau	CTF	338-2681	6	\$131	214
F	Carrier	-	829-7180		124	978
	Trane		567-8492		126	096
	Pana	A 800	497-8100	2		080
Koot rans	Cook	Ain Products	433,1200	Ė	,	017
	Tenn	Filkins	429-8155		1	109
					 	
Grilles Diff	Titus	Air Products	-	27	2	319
	T+B	-	299-8150		2	225
	Agitair	Kreston	276-3181		2	380
······································	<u> </u>					
Electric Coils	Indeeco	CTF	-	6	-	-
	Chromolox	Electric Supple	273-5225		-	Ļ
		· · · ·			ļ	
		ļ			+	
Temperature	Honeywell		661-0010	ŀ	11	400
Control	Johnson Svc		167-3140		+ 2	128
	KODert Jhaw		110-4161	<u> </u>		614
Gas Pining	McCanthi		792-4022		5	400
ous riping	I'll cut thy			<u>†</u>	+	1,00
		<u> </u>		†		†
Kitchen Fire	Ansul		329-8110	ļ		90
Protection				ļ		
System				ļ		
						+
				<u> </u>		+
			·			+

Figure 5-5. Sample Filled Out Quotation Call List and Price Comparison Form

QUANTITY TAKEOFF AND EXTENSION SHEET

The quantity takeoff sheet is a general form for taking off and listing types, sizes, quantifies, etc. of the various items required in a bid and then for using as a worksheet to extend the material amounts, labor, costs, etc. and total up.

L dol	QI Zayres Disco	JANTITY TAKEOF	F AND EXTE	INSIO		Γ — ີ (Pr Date <u>2/</u>	26/8	1
-			DIFF	USE	RS, G	-RI	LLE	S	
Drwg		11.0	her						
Flr r Sys	Sise or Item	Quant	-i+11	Ea	Tatal				
11	24 * O Diffuser	18	<u></u>	2.0	36.0			<u> </u>	
	Ι6"Φ *	2		1.6	3.2				
	12x12 Register	2		.8	1.6			<u> </u>	
	24×12 "	4		1.1	4.4				
	48×12 "			1.5	1.5			[
	48x24 Egg Crate	Grilles 20		.2	4.0				
		Total	Hours		50.7			<u> </u>	
							 		
		······		-			<u> </u>		
*								<u> </u>	· · · · -
-				-				1	
								· [
				_					
							ļ		ļ
							ļ	<u> </u>	
· · ·				-					
						<u> </u>			
								·	
			······································			 			
				-{			<u> </u>		
		- " · · · · · · · · · · · · · · · · · ·							
		······································				<u></u> †—-			
				-				1	<u>.</u>
								1	
								1-	
								1	
	l					<u> </u>	ļ		
ndes f	ngineering and Contractio	g Services		I	ł	1	10/90 5	nra FS	1.195

Figure 5-6. Sample Filled Out Quantity Takeoff and Extension Sheet Form

SUMMARY SHEET

The summary sheet is used as a line item summary of all the different items included in the estimate.

It should be divided into the major divisions of a bid, quoted equipment, ductwork, piping, specialties and accessories, miscellaneous labor, etc.

The total amounts of material quantities, labor, etc. are transferred from duct and piping takeoff sheets, quantity takeoff sheets etc. to this summary sheet.

	SUMMARY SHEE	:T		D	ata Feb.	27,	1981
J00 Z	layre's Discount Store						
		MA	TERIAL	s	HOP	F	IELD
		UNIT	TOTAL	and a l	1014	UNIT	TOTAL
6	Roof Top Units, 39 Tons ea, 14,700 CFM	\$	126,096	-	-	21	126
	DX, 'Gas, Economizers		-		-		
	Koot Exhaust Fans, 1000 + 400 CFM		488			14	<u> </u>
20	Diffusers (18) 24"d (2) 16"d		2.225		-	1/4	51
7	Registers (2)2X12 (4)24X12 (1)48X12			_	_	1	2
20	Egg Crate Grilles, 48x24		200	_	-		10
_3	Grease Filters		60		-		<u> </u>
	(Total equipment \$129,869)						
·		ارد خ	0.150	61167	250	BITKZ	
	Galvanized Ductwork, LP, 24,084 1D	<u>9 27</u> 21	8 187	705F/	237	Zhr	<i></i> .
	Bhad Ton Kit Duct 16 24416	-34	<u>- 7</u> -0-170 (2	C	60		
	DALK INT DOLLING L. 21010		• <u>•</u> ••				
3	Turning Vanes 361b	.70/1b	25	.5	1.5	-	-
_6	Splitter Dampers 1616	3.00	18	.33	2.0		
	Kitchen Exh. Acod, 5'x2'x2' 501b	.26	39	 	10.0		8
	(lotal materials 213, 780)						
	Cartage 12 loads 20 2001h	<u>-</u>		2	480	<u> </u>	
	Field Measuring 20 pieces					.5	10
	Testing and Balancing	-	-	-	-	-	-
	J			ļ			
		 					
	· _ · _ ·	<u> </u>					
				 			
				 			
	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
				<u> </u>			L
		ļ	<u> </u>	 		.	
			<u> </u>	+			
	Tabale		1112 (10		1.20		1003
Wende	t IO 10-13 s Engineering and Contracting Services	• •	רוטירוו	1	hr 3/3	'↓ 3 For+ {'	1 106 hr
ł							
L							

Figure 5-7. Sample Filled Out Summary Sheet Form

TELEPHONE QUOTATIONS

The telephone quotation form is for recording quotations which come over the phone, in an organized, complete and readable fashion.

It includes a checkoff list on the bottom, covering critical aspects of a quote such as, if they meet plans and specification requirements, addenda, taxes, freight, lead times, etc. A box is provided for exceptions on items not included.

	Т	ELEPHON		ΤΑΤΙΟ	Ν	
10b Z	Layre's	Discount	Store	······		
Suppli	er Iran			By Jim	<u>1-84</u> Ritte	1 <u>2</u> er
QTY	MPGR	DESCRIPT	ION	ACCESS- ORIES	AM	Total
6	Trane	Roof Tool	Inits		Lach	136 094
<u> </u>	in ane	DX. Gas	Fired.			
	1	Curbs, Ec	onomizer	5	1	
		38 Tons e	each			
		14,700 CF1	1 each			
					<u> </u>	
–						
<u> </u>						
		Gra	nd Total		1	
	·····					
		The ended	INCLUDED		<u> </u>	T
		Tealatons	1213			
<u>.</u>		1230101013				+
		······································				
Meets	plans and s	pecs D	Taxes inc	luded	No	
Addend	lums included		Freight i	Included		
rabe i	nateriais CC		Price goo	d for 9	<u>10 (0</u> 10 (1	<u>eeks</u>
		Engl Sak				• -

Figure 5-8. Sample Filled Out Telephone Quotation Form

BID RECAP SHEET

The purpose of the bid recap and markup sheet is to:

- 1. Recap the direct costs on labor, raw materials, equipment and subcontractors and total them.
- 2. Put markups on each group and total the overhead markup.
- 3. Put on a profit markup.
- 4. Total everything for a bottom-line bidding price.
| | | × | Es | e Da
tima | tor FS | <u></u>
) | <u> </u> | |
|---------------------------------------|----------------|-----------------------|----------------|--------------|----------------------|--------------|----------|----------|
| | | WAGE | | | | | | |
| | HOURS | RATE | | - 60 | ST | | | |
| Shop Labor | 670 | \$21.00 | 5 | 14 | 070 | | | |
| Field Labor | 1003 | \$21.00 | 5 | 21 | 063 | | | |
| Wage Increase Shop | | | 5 | | 0.61 | | | |
| Wage Increase Field | 500 | 1.30 | 5 | | 130 | | | |
| Overtime | | | 5 | | | | | |
| Travel Costs | | + | \$ | | | | | |
| | | <u> </u> | 5 | | | | | |
| | | <u> </u> | 5 | | | - | 25 | 007 |
| · · · · · · · · · · · · · · · · · · · | | | | TAL
12 | LABOR | 5 | | 882 |
| Raw Materials | | | 3 | 13
79 | 100 | | ; | |
| Equipment | | | 21 | <u>A </u> | 0.01 | { | | |
| Seles Ten | | | 10 | <u> </u> | 182 | 1 | | |
| | TOTAL | MATERIAL. | AND | EOUT | PHENT | 1. | 150 | 831 |
| Subcontracts Tempero + | use Contr | al | s | 2 | 400 | Ť | | |
| Gran Pioir | | <u> </u> | 5 | 5 | 400 | 1 | | |
| Kit Fire Pr | stection S | ustem | s | | 900 | 1 | | |
| | | 3 | 5 | | 1 | 1 | | |
| | | | 5 | | | 1 | | |
| | | | s | | |] | | |
| | | TOTAL | . SUE | CONT | RACTS | \$ | 8 | 100 |
| | | TOTAL | DIF | RECT | COSTS | s | 195 | 414 |
| Overhead On Labor | | <u>40</u> 5 | Ś | - 14 | 353 | 1 | | |
| Overhead On Material and Equi | pment: | 105 | s | 15 | 083 | | | |
| Overhead On Subcontractors: | | 10 # | \$ | | 810 | Ļ | | |
| | | | INTOTA: | LOV | ERHEAD | 5 | 30 | 306 |
| (6 % of Total Direct C | osts) (| <pre>% of Sale:</pre> | ;) | | | 1 | | |
| | TOTAL DI | RECT AND | INDI | RECT | COSTS | 5 | 225 | 120 |
| Profit: 3% of Total | Costs | | 5 | | 286 | | | |
| Performance Bond: 1.3 3 | of Total Bid | | <u> </u>
 - | 3 | 1200 | | | |
| Financing Costs: Amount 5 | ; | | 5 | | | - | | |
| | | T | 13 | BID | DRICE | - | 240 | 56 |
| <u> </u> | . 20 000 - | <u> </u> | 1 . | <u>, 1</u> | 1.102 | 12. | <u></u> | <u> </u> |
| Budget Check: #240,361 | \div 328 $+$ | <u>9+7 2 4</u> | 3.0 | 5-1 | $\frac{59 \pm 1}{4}$ | <u> </u> | | |
| | | | 100 | <u>⇔</u> .† | | ı | | |

Figure 5-9. Sample Filled Bid Recap Sheet Form

BIDDING RECORD

The purpose of the bidding record form is to have a written record of to whom phone bids were given:

- What was the amount?
- What were the inclusions and exclusions?
- On what plans, specifications and addenda were the bids were based?

	BIDDIN	G RECO	DRD	
Job Zayre's D	iscount St	fore	Due Date Fe	<u>28, 1981</u>
Location			1 ime	2 P. 141.
BID SUBMITTED TO:				
Company	Name	Phone	Amount	Remarks
Kemper, G. C.	T. Richman	981-2038	\$240,560	
Cochran Bldrs	F. Andrew	439-9252	\$ 240,560	
G. Quinn Contr.	Mc Donald	255-0070	\$ 239,660	No fire protection
Bohling Bldg.	R. Burke	870-8662	\$ 240,560	
Sullivan Constr.	H. Kushner	989-6311	\$ 235, 160	No gas Diping
				5 1 1 5
	-			
INCLI	USIONS	Pau	EXCLUS	IONS
Sheet Metal	1	<u>Sta</u>	rters	9
Temperature (Control	<u> </u>	nting	
Kitchen Hood Fi	re Protection Si	45. <u></u>	ming Noo	+ Openings
<u>Gas Piping</u>	· ·			
ADI	DENDUMS		ALTERN	ATFS
No.1 Feb. 26	1981			·
······································				
Dravinge Included	MI-M3			
Specifications Included	aded Section	n 15		
Remarks				
<u></u>				

Figure 5-10. Sample Filled Out Bidding Record Form

CALCULATING LABOR COSTS PER HOUR

The following form ensures that all the components of the wage rate are included in the rate used in a bid.

This includes:

Base wage rate Normal union fringe benefits Federal and state payroll taxes Insurance Dues

In the bottom section the contractor is able to determine the cost per pound of ductwork, based on the calculated wage rate above.

Musican Lagal No. 303	antract	Frain	tion (-/1/11	Non Union	
FRI	NGF BF	INFEI	TS PE	RHOUR	NON UNION	1
		Journ	eyman	Foreman	General	Other
Base Rate		\$ 15.0	0	\$ 16 50	s foreman	5
Welfare (Medical) (\$)		15	.95		1
Pension (%)	1.2	12	1.22	1	
Apprentice Fund	\sum		14	.14		
National Training Fund	5					
Vacation, Savings or Othe	r		36	. 36		
Industry Fund			8	. 18		
TOTAL BENEFITS	19 %	\$ 2.8	35	s 2.85	5	\$
TOTAL WITH BASE		s 17.1	85	<u>s 19.35</u>	5	\$
PAYR	OLL TA	XES /	AND IN	ISURANCE		
F.I.C.A. (5.65%	1.	00	1.10		
Workman's Comp.	8.00 \$	1.	20	1.32		
Federal Unemployment	.60 \$		09	.10		
State Unemployment	2.70%		.41	.45		
Liability Insurance	1.25%		19	.21		
Property Insurance	1.00 \$		15	.17		
Association Due	*	ļ			L	
TOTAL TAXES 4 INS.	0.2 %	3.	04	3.35	<u> </u>	
TOTAL BASE, BENEFITS, TAXI	ES, INS	20.	.89	22.70	<u> </u>	
со	ST PEF	R POU	ND B	REAKDOW	/N	
Tunical Low Pressure Gal	<u> </u>					
15% Fittings, 246e. Average	LBS	/HR	COS	T/LB	LBS/HR	COST/LB
Material	[.33		
Shop Labor	4	4		.48		
Field labor	2	5		.84		
Shop Drawings	20	0		.11		
Cartage	80	٥		.03		
	ļ					
TOTAL DIRECT COSTS	 		5	.80		\$
Indirect Overhead 25%	 			.45		
TOTAL COSTS			2	.25		
Protit 3%	ł		<u> </u>	.11		+

COMPANY MARKUP CALCULATION SHEET

The company markup calculation form contains easy-to-use formulas for calculating single and dual markups on total direct costs on the projects, and for the total selling cost of labor.

Steps 1 and 2 require determining what the anticipated sales will be for the forthcoming 12 months and what the anticipated breakdown of overhead, labor, material subs and profit will be.

	COMPANY	MARKUP CALC	ULATION SHEET
			Date JAN 2, 1985
Com	IDANY BENSON HEAT	ING + AC_Period_	
۱.	Anticipated Sales For	Year	\$ 2,000,000 Percen of Sale
2.	Total Indirect Overhe Administration Cos	ad and ts for Year	5 350,000 17.5°
	Profit Desired	5_%	5 100 000 5.00
	Total Anticipated Dir (Material & Labor 4	ect Costs for Year 8 Sчbs)	\$ 1,550,000 77.59
	Breakdown:	Labor (Includes fringes, payroll taxes, ins.) Material and Equipment Subs	\$ <u>700,000</u>) \$ <u>750,000</u> \$ <u>100,000</u>)
3.	SINGLE MARKUP NEEDED	ON TOTAL DIRECT COSTS	
	Percent For Overhead Only:	Overhead Costs Direct Costs =	\$ <u>350,000</u> =22*
	Percent For Overhead and Profit	Overhead & Profit Direct Costs	\$ <u>450,000 =</u> *
4.	SIMPLIFIED DUAL MARKU	P FOR OVERHEAD	Amount of Markup
	Markup on Material Narkup on Subs	s and Equipment <u>10</u> % x <u>5</u> % × Total Overhead on Ma	\$\$ \$\$ \$
	Percent Markup on Labor = for Overhead	(Total Ovhd) - (Matl. (Labor Costs)	& Sub Ovhd) _
	\$ <u>(.35</u> (<u>(700,000</u>) (<u>\$80,000</u>)	$\frac{1}{5} \frac{270.000}{700.000} = (38.6) x$
5.	TOTAL SELLING COST OF	LABOR PER HR WITH DUAL MA	RKUP SYSTEM
	Wages per hr (incl.	fringes, ins. and taxes)	\$ 27.50
	(wages) x (percent o Profit e x /on wa	verhead markup on labor)	5_10.45
		Total	\$ <u>39.85</u>

Figure 5-12. Sample Filled Out Company Markup Calculation Sheet Form

PER PIECE DUCT TAKEOFF SHEET

Estimating ductwork labor by the piece is the most accurate and clearest method available for contractors.

The takeoff involves listing the duct size, type, quantities on fittings, and lengths on straight duct.

The extension of material involves totaling footages per line, entering the weight per running foot and multiplying for the total material weight on each line.

The extension of labor involves totaling the quantity of pieces, looking up and entering labor hours per piece for the shop and field and multiplying out for the totals per line.

After the lines are extended the columns are totaled.

	DED DIEGE DUCT TAKEDEE SHEET												
PEF	r Pie	CE DUCT TAKEOFF	= Sł M	HEE	T Sal	5	, E-3	3, E · 4					
Job	erra	e nestaurant Drawing_	1•1-	1	System 3-1	1 <u>, J</u> *a	1, 🗆 Li	ining —		-			
Type I	Duct: 🖬	Salv, CLP CHP, COther						suce		FIFLD			
DUCT	TYPE	EQUIVALENT	тот	¥	EICHT	077		ABOR	1	ABOR			
SIZE	DUCT	LINEAR FEET PER PIECE	LF	LBS	Total	QII	Hrs /Pc	Total	Hrs /Pc	Total			
404 24	STR	5	5	20.4	102		.8	.8	2.3	2.3			
494 18	<u> </u>	5-2	7	18.1	127	2	.8	1.6	2.3	4.6			
18 48	SE	1	2	12.1	36	1	2.8	2.8	3.3	3.3			
24×18	RE	6-6	12	9.8	118	2	1.5	3.0	1.3	2.6			
<u> </u>	TR	3	3	98	29	1	1.0	1.0	1.2	1.2			
30×18	RE	71/2-71/2	15	11.2	168	2	2.4	4.8	2.2	4.4			
	STR	5-5	10	11.2	112	2	.55	1.1	1.6	3.2			
	TR	3	3	11.2	34	1	1.4	1.4	1.7	1.7			
30415	STR	5-3	8	10.7	86	2	.55	1.1	1.6	3.2			
"	TR	3	3	10.7	32	1	1.4	1.4	1.7	1.7			
30 × 12	STA	5-3	8	9.8	18	2	.4	.8	1.1	2.2			
	TA	3	3	9.8	29	1	1.2	1.2	1.2	1.2			
18 2 12	STR	<u>т.</u> з	8	20	56	1	3	.6	9	1.8			
16 4 6	DF	<u>u_u_4_4</u>	16	51	82	ũ	1.3	5.2	1.1	4.4			
	ST0	$(15) \times 5' - (5) \times 5'$	100	51	510	20	.3	6.0	.9	18 0			
	T		4	51	20	1	.6	.6	.6	.6			
12 × 6	25		10	22	33	5	.8	4.0	.6	30			
	$\frac{nc}{\tau}$	latatatatatatatatatat	12	22	<u> </u>	12	4	4.8	.5	6.0			
	CTD	(10) 15'-(4) 25'-(2) 25-(6) 27'	97	2.2	320	23	2	4.6	5	11.5			
14.6	- -	$(\gamma) \times 1'$	7	5.3	37	2	6	42	.6	4.2			
$\frac{1}{10}$			12	19	35	12	4	48	5	6.0			
26 10	STA	5-5-2	10	15 3	181	2	55	17	1.6	4.8			
10-16	510	1	2	10.2	21		24	74	22	2.2			
10/00	STA	5.2	6	11.2	90	2	3	6	9	18			
	TO	1	2	11.2	10		10	10	12	1.2			
20112	ST0	5	9	25	60	2	3	6	9	1.8			
	72	1	2	25	22	1	8	.8	1.0	1.0			
7446	STR	5.1	0	1.2	56	2	13	6	a	1.8			
2076	SE	5-5	10	61	31	î	113	13	111				
*	STO	5	5	41	31		13	3	9	.9			
17217	19-0	5	F	44	31		12	2	1 5	5			
24×24		5	5	112	54	+ ;	14	4	tii	1.1			
12" 6	T	(5) XI'	5	172	17	1	14	2.0	1.5	2.5			
-' *	<u>├</u>	Total	4131	1 2.2	2,119	123		61.7		107.8			
Ventes	Enginnerin	n and Contracting Services		<u></u>	LB	PC	S	Fora TS.	FOT 12	0 HR			
TR: Tro	raight Lnsitio	i RE: Radius Ell; sE: Squar in; T: Tee	-e 81	11									
L				·									

Figure 5-13. Sample Filled Out Per Piece Duct Takeoff Sheet Form

T

PER POUND TAKEOFF SHEET

In the per pound method of takeoff of galvanized ductwork, straight ductwork and fittings are taken off separately.

- 1. Duct sizes and lengths are taken off and listed. The footage is totaled on each line and the weight per running foot entered.
- 2. Then the weights are totaled per gauge, totaled for straight and fittings separately and the percentage fittings is determined.
- 3. The labor factor in terms of pounds per hour is then looked up based on the ratio of fittings and the average gauge.

Job		Galv. ELP DUP DU	Drav	ing]	<u>M-I</u>	System Durf W	levat-	 אוים ירו	.ining <u>ľ</u> nsulari	1/	1 1	<u>b_</u>		
DUCT	SQ FT	LINEAR FEET	TOTAL	LBS PEA LF	0-12	1,3-30	31-54	55-84	85 up	T V	V D	r C	F D	-
SIZE	L THEAR FEET	STRAIGHT DUCT	FEET	with WASTE	26ga	24ga	22ga	20ga	18ga					
56×30		102-30	132	32				4224	њ					
54×20		402	402	21			8442					1		-
30 X 18		420	420	11.2		4704				1]			1	_
30 x 14		56-100	156	10.3		1607]		_]	_[_
24×12		40-40	80	8.4	 	672		ļ	ļļ				_[_
32 X 14		28-100-40	168	13_			2184	l				_		
12×6	ļ	15	15	3.3	50									
12X 2	 	6	6	4.4	26	10-				┫			_	_
	 		1379'		76	6481	10,626	4224	16	 		\square		_
	ļ	Total Straight			21,907	16	ļ	<u> </u> !	<u> </u>	 		\vdash		
	\vdash		+		 			—			├			
R/ V 3 -		FILLINGS	31		H			1	 	┨──┤		┝╾╽		_
36×30	ļ—i	18-18	36	32	<u> </u>		200	11122	<u> </u>	<u>-</u>	\vdash	┝─┤		L_
<u>05870</u>	<u>├</u>	10	18	2	∦∤	222	318	+	<u> </u>		\vdash	┝─┤		-
30414	├ ──┤	2-	1 20	1.3	∦	210	<u> </u>	+	 	1-1		┟─┤	-	-
24 4 19	<u>├</u>	k-h-h-h-l-l	21	10.3	<u> </u>	171		+	<u>+</u>	1.4	1			-
27 414	<u></u>	1-3	1	17	 	1311	57	+	<u> </u>	1	1			┞
16" 4		3	2	5		15	1 22	+		1	+	$\left - \right $		┢
12 44		3-2	5	3 3	18	- 13	<u> </u>	+	t	1	+	1-1		┝
	t	×	1401	<u></u>	12	677	330	1152	15	1-	-	1		-
		Total Fitting	<u> '''</u>	1	2.177	16	1	1	<u> </u>	1-	1-	-	-	t
			-	1	<u></u>	×	1	1	1	1	-	1-1		-
	1	Total Weight	1	1	24.024	ІЬ	+	1	1	1-	1		 1	t
			1_	<u> </u>						1-	_		[t
	[Percentage Fittin	45		2,177	: 9%				1	Γ	[[-	1
		<u>J</u>	J		24.084					I	Γ		[Ţ
		Average Size			22	Grauad				1	Γ	[[T
						□],				1	[[[1
							L			1	Γ	1.	[[
												1		T
										1		1	[T
					11	L	1				1.		[Γ
		1				L	<u> </u>	1	L	1	Ļ	1_	Ľ	1
				1	11	L					1	L	L	ſ
fendes fingi	neerii	ng and Contracting Services	;						9/80		- N	in. 1	SI	17

Figure 5-14. Sample Filled Out Per Pound Duct Takeoff Form

T

REQUIREMENTS OF A GOOD PIPING ESTIMATOR

A competent and reliable piping estimator must possess the following background knowledge, skills and abilities:

Estimating Principles and Procedures

- 1. He must follow sound efficient procedures for preparing estimates, such as:
 - a. Become thoroughly *familiar* with the project, the types of systems and piping, valves etc. involved in the scope of work, before starting a detailed takeoff.
 - b. Be familiar with *budget* estimating: HVAC costs for different buildings based on cost per sq. ft. of building or cost per ton of air conditioning; amount of piping per sq. ft. of building or by the average size; cost of piping per linear ft. or per sq. ft. of building.
 - c. Know the major *divisions* of an estimate:

Equipment Piping, Valves Accessories, Specialties Special Labor Sub-Contractors End of Bid Factors (such as sales tax) Markups for Overhead and Profit

- d. Must be familiar with *detailed scope* of what is required in a piping estimate.
- e. Highlight drawings before the takeoff
- f. Follow systematic overall *procedure*

Study the plans and specs

Send out quotation requests

Highlight Drawings

Make Takeoffs and Extensions

Summarize

Recap and Markups

- g. Do constant systematic *checking* on each part as he goes along and overall at the end. Double check everything.
- 2. He must have the ability to *read blue prints*, recognize symbols, types of pipe lines, types of equipment and systems, etc.

PIPING SYSTEMS

 He must be knowledgeable of *types of piping systems* such as: Low, Med and High Temp *Hot Water* Systems Low, Med and High Pressure *Steam* Systems *Chilled Water* Cooling Systems *Refrigeration* Systems *Hot* and *Cold* Water Systems Oil and *Gas* piping

He must not only recognize the various types of systems on plans, but he must know all of the components required in them, whether shown on plans or not.

4. He must know about different types of *piping system configurations* such as:
 1,2,3 and 4 pipe systems
 Reverse and Direct Return
 Constant and Variable Volume
 Closed and Open Systems

PIPE AND FITTING MATERIALS

5. A piping estimator must know about different types of *pipe* and *fitting materials*, manufacturing methods, types of fittings in each category and applications to systems.

Black Steel pipe:	Sched 20, 40 and 80, A53, A120, A106, Seam and
	Seamless Pipe, TC and PE Ends
Black Fittings:	Malleable, Butt weld, Forged and
	Black Cast Iron Fittings
Copper Tubing:	L.K.M, ACR Soft and Hard Tubing, plus DWV
Copper Fittings:	Wrought and Cast Fittings
Pressure PVC:	Sched 40, 80, Socket and Threaded Pipe and Fittings
Galvanized Pipe:	Sched 40 and 80
Galvanized Fittings:	Malleable
Cast Iron Soil Pipe:	Hub and Spigot, No Hub

6. He must know the *applications* of different types of pipe and fittings materials to various systems:

Recirculating Water, 250 F

For 2" dia and under Black Steel A53 Seam Sched 40 Threaded Pipe

Malleable Threaded Fittings

For 2" to 12" dia Black Steel A53 ERW Welded Pipe Butt Weld Fittings

Steam and Condensate

For 2" dia and under, 90 lb
Black Steel A53 Seam Sched 40 Threaded Pipe
Cast Iron Threaded Fittings
For 2" to 12" dia, 250 lb
Black Steel Standard Welded Pipe

Wrought Steel Weld

Refrigerant

Copper L,K, ACR Hard Tubing, Brzed Wrought Copper Fittings

Underground Water

Through 12" dia, 350 lbs Copper K, Hard Tubing, 95-5 Solder Wrought Copper Fittings **Potable Water** Inside Building, 350 lbs Copper L Hard Tubing, 95-5 Solder

Wrought Copper Fittings

FITTINGS AND CONNECTIONS

7. He must be familiar with different types of *fittings* and those available with all the different types of materials:

Long and Short Radius 90 and 45 degrees *Elbows* Straight and Reducing *Tees* Concentric and Eccentric *Reducers* Straight and Reducing 45 degree *Laterals* Caps, Plugs, Unions, Adapters, Couplings *Weldolets*, Threadolets and Sockolets Threaded, Slip On, Welded Neck *Flanges* Straight and Reducing *Wye* fittings, DWV *Combination* Fittings, DWV *Bends*, 1/8, 1/4 etc., DWV Straight, Reducing Tapped *Sanitary Crosses*, DWV *Traps*, Cleanouts, DWV

8.	He must have the	brough knowledge of the different types of <i>piping connections</i> .
	Steel:	Threaded, Butt Welded, Flanged, Grooved, Socket Weld
	Copper:	95/5, Solder Brazed
	PVC:	Solvent, Heat Fusion, Threaded
	Cast Iron:	Soil Pipe, Hub and Spigot, No Hub

9. He must be familiar with various types of *hangers* and *supports* such as rings, cleaves, spring, riser clamps, etc.

Labor

- 10. He must know *sources of labor* such as MCA and NAPHCC association labor tables, other manuals available, cost records, etc. He must know the *methods* of estimating piping labor such as pipe per ft. and fittings per piece (based on joints), pure per joint labor method or per diameter inch. He must apply *labor multipliers* whenever needed and do so with reasonable accuracy.
- 11. A piping estimator must be well versed in *piping installations*, the steam fitters plumbers trade, in the operations involved in installations and with tools, scaffolding, etc.

Pricing

13.

12. He must know sources of *pricing* such as piping supply houses, list pricing services such as Trade Services, Harrison, Alpriser, etc. He must be able to use quotations, pricing estimating manuals, etc.

UALVES AND SPECIALTIES AND EQUIPMENT

He has to know about *valves*: Bronze, Iron, Steel, Plastic, etc. Gate, Ball, Globe, Butterfly Check, Strainer Angle, Diverter Steam Traps Pressure Temperature Control Balancing, Gas Cocks Refrigeration Three Way (Combo check, gate and balancing)

- He must know about specialties such as: Air Separators, Air Vents, Bleeders Rolatrols (Combo air separator and strainer) Pressure Reducing Valves Receivers, Sight Glasses, Dryers, Filters Vacuum Breakers, Drip Legs, Converters
- He must know about HVAC Equipment
 Pumps: Centrifugal, Inline, Single and Double Suction Boilers, Unit Heaters, Baseboard, Heating Coils Chillers, Cooling Towers, Cooling Coils Compressors, Condensers
- 16. A piping estimator has to know about *gages* for temperature, pressure and flow readings.

WAGE RATES, UNIONS, JURISDICTIONS

- 17. He must know about *wage rates*, fringe benefits, federal, state and local taxes, insurance, etc.
- 18. He must be knowledgeable about union, trade and local *labor jurisdictions* and he must know about building *codes*.

Design

19. He must have some familiarity with piping system *design* such as typical flow rates, pressures and sizes and with the sizing and selection of equipment.

OTHER TRADES, TYPES OF BUILDINGS

- 20. He has to be familiar with *other trades* such as piping, insulation, temperature control, electrical and excavation.
- 21. He must be familiar with all types of *buildings*, commercial, institutional, industrial, their general sizes, layout, etc. and with the sequence of general construction work.

Markups

22. A good piping estimator must be generally familiar with financial statements such as profit loss and balance sheets. He must be able to determine the correct markup for overhead and profit for his company and for the particular job he is bidding.

He should understand how overhead costs are *pro-rated* onto direct material and labor costs for different projects, for different levels of sales and overhead costs, for different ratios of material to labor etc.

Skills, Traits Required

- 23. Estimating requires a host of skills, mathematical, mechanical, reading, writing, visualizing and drawing. It requires being methodical, analytical, and realistic.
- 24. It absolutely demands that the estimator be *reliable*, that he be thorough in his understanding of the project, of its scope, in takeoffs, interpretations, extensions, summaries, recaps.

Thus, the knowledgeable, proficient and reliable estimator as described above will be able to produce complete and accurate estimates, which in turn become the required foundation blocks of successful contracting.

PIPING TAKEOFF SHEET

Pipe and fittings are listed separately

- 1. The diameter, type item, footage for pipe and quantities for fittings, are taken off of blueprints and listed.
- 2. Footages and quantities are totaled per line, labor and price factors looked up, entered and then extended.
- 3. The cost and labor columns are then totaled.

PIPI .106 <u>A1</u> Type P	NG TAKEO rium Rest	OFF SHEET aurant Draving M	-l bcrew	System G	7 0.5 ∏ II	tors	lon		
DIAMETER	ітея	QUANTITY OR LINEAR FEET	TOTAL	HATERIAL COST		El Equiv	RECTION I	ABOR	
	Pine	2-10 (Feet)	12	2.49	30.00	2	64	1.28	
1/2-0		23	23	1.18	41.00	2	.44	.88	
3/4" +	н	2-6-2-9-6-2-4-6							
		2-8-2-8-2-8-2-8	19	.86	68.00	17	.28	4.76	
1" 0	11	30	30	1.18	35.40	_3_	.34	1.02	
		(Total Pipe)	144'						
2.9	90° Ell	II (Pieces)	2	3.50	1.00	4	.64	7.04	
3/4" +	11	HH HH III	14	.60	16.80	28	28	7.84	
2×2×1	Tee			_	5.05	3	.64	1.92	
1/2×1/2×1/1		1			4.63	3_	44	1.32	
3/4" 4	Unions	WH 111	8	.96	1.68	16	.28	4.48	
_2*+					5.90	2	.64	1.28	
<u> " </u> \$	Couplings				1.35	<u> </u>			
	<u> </u>	1		<u> </u>	2.20				
		(Total Fittings)	29						
3/4.6	Gas Stops	1.11	17	4.60	32.20	2	.28	.56	
	Hangers	-	15	1.26	18.90		.5	7.50	
		Totals		\$	276.11]		40hr	
				.					
			-				· [
		_							
		·							
			-]		·	·		·	
			-						
<u> </u>			l			· ·	.		
		-	·						
_,			-1	-					
	1		-	-1					
							•	•	
	L		1]					
Nendes	Engineering and Cont	racting Services				Fore No	. EST 130		

Figure 5-15. Sample Filled Out Piping Takeoff Sheet Form

COMPUTERIZED ESTIMATING

WenDuct and WenPipe Systems

Fast Accurate, Easy to Use

BENEFITS OF COMPUTERIZED ESTIMATING

Bid two to three times as fast with the WenDuct and WenPipe systems. Prepare more accurate and complete bids. Save time and money.

Easy to use, menu driven, self prompting system with a short learning curve that guides you through the natural flow of estimating.

COMPLETE WENDUCT SHEET METAL ESTIMATING SYSTEM COVERS:

- All types of HVAC SYSTEMS
- Rectangular and Round *HVAC GALVANIZED* Ductwork Low, Medium and High Pressure
- All types of *CONNECTIONS* Cleats, Ductmate, TDC etc.
- SPIRAL Pipe and Fittings, Single

and Double Skin, Round and Oval

- FLEXIBLE TUBING
- FIBER GLASS Ductboard
- HEAVY GAUGE Metals Up to one half inch thick Black Iron, S.S., Aluminum, etc.
- All Types of DUCT ACCESSORIES
- All Types of *EQUIPMENT*
- LINER and DUCT WRAP

The WenDuct estimating software package covers everything needed to produce COM-PLETE sheet metal estimates.

Complete WenPipe Estimating Systems Covers:

• All Types of Piping SYSTEMS

HVAC: HWH, CHW, Refrigeration, Steam, Gas, Oil PLUMBING: Soil Pipe, Drainage, Storm, Vent, Hot and Cold Water

FIRE PROTECTION PROCESS PIPING

 All Types of Pipe *MATERIALS* Black Steel, Copper, PVC

WenPipe Estimating Systems Covers (Continued):

Galvanized, Stainless Steel Cast Iron Soil Pipe, Ductile Poly Pipes, FRP, etc.

- All Types of *FITTINGS*, HVAC, DWV
 Malleable, Butt Weld, Flanged, Grooved, Wrought Copper etc.
- All Types of *CONNECTIONS* Threaded, Welded, Flanged, Grooved, Soldered, Brazed, Solvent Bell and Spigot, No Hub, Mechanical
- All Types of VALVES and SPECIALTIES
- All Types of Plumbing FIXTURES
- HANGERS, Gaskets, Flanges, Couplings
- TRENCHING and INSULATION
- EQUIPMENT, Gages

The Super-Pipe HVAC, Plumbing and Process Piping estimating systems covers everything needed for complete mechanical estimates.

HIGH SPEED, EASY TO USE FEATURES

- High speed takeoffs with *DIGITIZER BOARD* and PEN or *COMPUTER KEY-BOARD*
- LABOR and PRICING TABLES preloaded, ready to use, user adjustable.
- Automatic DUPLICATIONS and ASSEMBLIES

- Automatic generation of CONNECTION, HANGERS, and COUPLINGS.
- CALCULATES all material and labor automatically
- Automatic PRICE COMPARISONS
- AUTOMATIC PRICING SERVICE Available

Pricing and Labor Tables Preloaded

All pricing and labor figures are preloaded and WenDuct and WenPipe are ready to use out of the box. All tables are user adjustable.

Optional Computer Keyboard Or Digitizer Entry

Since the digitizer template and the computer keyboard are 100 percent compatible you have the option of using either, and switching back and forth as needed. The system is completely portable. You can estimate at home or at other offices.

Complete Estimating Reports

Super-Duct and Super-Pipe automatically looks up, extends and summarizes all *LA-BOR* and *MATERIAL* needed for complete bids. Clear and easy-to-read reports are printed out. Eliminate all messy, time consuming, error prone, and hand extension summaries.

- SEQUENTIAL TAKEOFF LISTS
- EXTENSION and SUMMARY Sheets
- BILL OF MATERIALS
- EQUIPMENT QUOTATIONS
- SUBCONTRACTOR QUOTATIONS
- Percentage MARKUPS for Overhead and Profit
- Bottom line BIDDING PRICE
- "WHAT IF" PRICE COMPARISONS

Complete Management Reports

Summaries Ouotations Job Recans Extensions Estimating Project WENDES Management Download to **ESTIMATING** Program Spreadsheet for SYSTEM Customized REPORTS Reports Cost Management Control Fabrication **Release Lists** Percentage Completion Bill of Materials Billing Labor Tracking

Super-Duct and Super-Pipe can be used as a management tool for more organized and efficient operations.

- MATERIAL LISTS for QUOTATIONS, PURCHASING, FABRICATION AND RELEASES
- SCHEDULING

- AUTOMATIC PRICE COMPARISONS
- LABOR TRACKING
- COST CONTROL and JOB STATUS

CAD DRAWING SYSTEM DOWNLOADS INTO ESTIMATING SYSTEM

Can download CAD ductwork drawings from InteliCAD into estimating systems for automatic generation of estimate saving without a takeoff.

Customize Personal Totals Reports

WenDuct and WenPipe estimating system users can now quickly and easily download the standard estimating reports into popular spreadsheets and create their own reports in any manner.

PCANYWHERE™ Modem Service

Perplexing and time consuming service calls can now be greatly simplified, and time on the phone reduced with the new pcANYWHERE[™] modem service offered by WENDES systems.

SUPPORT, SERVICE AND TRAINING INCLUDED

Complete support, service, unlimited phone time and training are included in the base price. This covers an instruction manual and free updates, for the first year.

For more information on the WenDuct or WenPipe estimating system, check internet, *www.wendes.com*.

This page intentionally left blank

Chapter 6 Hitting Home Runs in Technical Management

The Principles, Procedures and Forms of Home Run Problem Solving, Troubleshooting and Decision Making In Building Engineering and Contracting

Building engineers and contractors are essentially in a problem solving, troubleshooting and decision-making business.

Problem solving is not only an integral part of building system management and of contracting, but also is one of their most common activities. It is a continual succession of meeting objectives, and of overcoming obstacles and difficulties.

One of the biggest factors in the success of building engineers and contractors is how many home runs they hit in the problem solving process. The success of their careers is based on how well they handle the never-ending parade of new problems and decisions confronting them.

Unfortunately, many of the people involved in this area of work are still in the minor leagues when it comes to how well they score at solving their problems. For example, cardboard is used to blank off a combustion air louver because there is a draft when you walk by. Causes are not determined accurately or thoroughly enough on malfunctioning equipment, and the wrong part is replaced. Trial and error replaces sound troubleshooting, and so on.

However, their batting averages can be greatly improved and their field errors greatly reduced.

This chapter is about moving up from the minor leagues to the major leagues. It is about thorough, systematic and accurate problem solving, troubleshooting and decision making. Excerpts are taken from the forthcoming book *Hitting Home Runs in Technical Management*, by Herb Wendes, P.E.

FACED WITH A MULTITUDE OF PROBLEMS

Every day, operation and maintenance engineers, and contractors, are faced with a multitude of problems and decisions, which come in all sizes, varieties and complexities.

- *Operation and maintenance engineers* are confronted with system and equipment breakdowns, service and maintenance. They are faced with making expeditious troubleshooting and effective decisions on what to do and how best to do it.
- They are faced with the proper *operation and performance* of systems.
- They are responsible for effective *preventive maintenance*.
- They are faced with maintaining *comfort conditions* for the occupants, resolving the problems of hot and cold areas, drafty and stagnant areas, negative and positive building pressures, system imbalances, etc.
- They face *demands and conflicts* with occupants, owners, personnel, and architect/engineers.
- They are confronted with *purchase decisions*, costs, budgets, performance factors, timely deliveries, quality, durability, and so on.
- They are confronted with *"repair or replace evaluation decisions"* and life cycle cost analysis.
- They must maintain *indoor air quality*.
- They must meet *building codes*, union requirements, health and safety conditions and legal issues.

Contractors are involved with a continuous multitude of problems and decisions in a similar way:

- They are involved with *purchasing, scheduling, and installation* of equipment, piping, ductwork, etc. in a cost effective and timely manner per the contract documents.
- They are involved with preparing accurate *estimates* and meeting bidding deadlines. They must make sales and negotiate contracts.
- They must manage their *financing*—accounting, cash flow, billing, receiving payments, and overhead costs.

- They are faced with *personnel management*—planning and scheduling work, union requirements, getting and keeping skilled competent labor, doing acceptable quality work, and acceptable productivity.
- They must *coordinate and resolve conflicts* with the architect, engineer, owners, and other contractors in a mutually satisfactory manner.
- They must maintain *cost control* of material, labor and overhead. Inventories must be maintained.
- They must meet *building codes*, union requirements, health, safety and legal issues.
- In the end they must meet the problems of making the systems *perform* per contractual requirements and to the satisfaction of the occupants.

Causes of Problems in Building Systems

Problems with mechanical and electrical systems in buildings stem from the multitude of *components* in the systems, ranging from tiny transistors to huge pumps. They stem from the *complexities* of the systems.

Problems stem from the inevitability of *human error* in designs, installation, equipment, controls, electrical items, balancing systems, changes, maintenance, operations, etc.

Problems are generated from *wear and tear* on the system components.

Problems stem from the uncontrollable *variety of environmental conditions* inside and outside the buildings, and an endless host of other causes.

Problems stem from changes from the original design, remodeling, and changes in the occupants needs and use of spaces.

Move up from the Minor Leagues to the Majors

- Achieve *effective operations and maintenance* of the building systems.
- Satisfy the requirements of the *occupants* of the building, owners and investors.
- Avoid or minimize unnecessary *breakdowns* and down times of systems and equipment.

- Maximize preventive maintenance.
- Improve the monitoring of the systems.
- Improve the handling of deviations in performance.
- Control operational and overhead costs.
- Control *capital expenditures*.
- Help ensure that *occupants* will stay in the building and renew their leases.

Figure 6-1. Hitting home runs in building management and maintenance.

BENEFITS OF DEVELOPING HOME RUN PROBLEM SOLVING SKILLS

The more *knowledgeable* you are about the principles and procedures of hitting home runs in the problem solving and decision making processes, the more conscious you are of where you are and what you are doing in the process and the more deliberately you apply the process, the better you will swing your bat to get home runs or extra base hits, leading to the best solutions and most effective decisions.

- The principles, procedures and forms in this chapter will help *guide you* through the process of greatly improving your ability and performance at home run problem solving and decision-making.
- You will make more *informed, intelligent decisions,* solve problems faster and better, and solve them more effectively, objectively, thoroughly, and systematically. You will perform with *less strife* through the application of the principles and procedures. You will feel great *confidence* when decisions are made through this dynamic process—instead of that sunken feeling in your stomach when uncertain what the results will be.
- You will handle the *troubleshooting* of problems, making choices faster and better. You will avoid *sloppy and fragmentary* problem solving and decision-making, and be able to setup, analyze and evaluate *complex problems* better.
- You will control the *negative, adverse emotions,* which often thwart you from achieving the objectives.
- You will liberate and utilize *imaginations and creativity* powers much more extensively—greatly improve the *logic, thinking, and systematic* handling in problem solving and decision making— increase *alertness* and use senses more effectively.
- You will unravel and manage the *conflict of interest* issues that often plague people in the administration of their duties, and you will become more skilled at conflict resolution.

You will *develop the ability* to hit more home runs, and avoid strikeouts, groundouts, pop outs, and errors. This chapter provides a *proven system* of successfully playing top-notch major league baseball in home run problem solving, troubleshooting and decision-making.

UNDERSTANDING WHAT CONSTITUTES A PROBLEM

A problem, in its simplest and broadest terms, is something not the way you or your group want it, along with a desire to change it. *The boiler breaks down in your building on*

Christmas day during a frigid cold wave. This is obviously not the way you want it and you desire to change the situation as quickly as possible before it turns into a disaster.

It's the difference between the way things are and the way you or the group wants them. *Rain, mud, and cold weather during construction of a fast track production plant sets the schedule back months.*

Problems are undesirable circumstances and conditions caused by prior events. *An* extended heat wave in middle of summer during a peak period causes an electrical power blackout.

A problem consists of the deviation from a norm, standard or criteria. *In the high school* sample problem farther on in this chapter, a 32-decibel sound level, or less, was required for the library, and the actual was closer to 60 decibels.

The problem may be preventive. Changing oil in car every three months greatly reduces premature and unpredictable breakdowns and wear on the engine. Cut down on fatty food to prevent conditions, which could lead to clogged arteries and a heart attack.

A problem may be determining a hidden, elusive cause. The High School Vibration problem farther on in this chapter illustrates a hidden, elusive cause situation.

A problem might be finding and selecting the best chiller *to purchase* to replace an old broken one.

A problem may be how to achieve a goal. This involves determining what the gap is between the present circumstances and your goal, and how to achieve the goal. For example your goal may be to keep your car in good shape for 100,000. In the past you have only been able to keep your car in good condition for 50 or 60 thousand miles.

MULTIPLICITY THINKING; AVOID PARTIAL VIEWS

Keep mind open to multiple possibilities. A major principle of home run problem solving is multiplicity thinking—listing and considering a full range of relevant factors in each category of the process.

Think in terms of a full array of possible factors in each category—causes, objectives, options, effects—rather than skimping with just one or two items. *In the high school vibration problem there are nine possible causes listed, nine objectives and also eight possible options.*

Partial views of problems, causes, etc. can be disastrous. A more limited consideration of the possible causes in the high school vibration problem, and the resultant action based on selecting the wrong cause, would have wasted tens of thousands of dollars, caused an unbearable delay and not resolved the problem.

Considering the full range of possibilities makes it easier to hold back on conclusions and decisions until sufficient preparation is completed, as well as avoiding overlooking critical factors.

Practice multiplicity. Do not strap your self down with singular items in the problem solving categories of the process.

Home run problem solving involves the ability to gather the full range of relevant factors in each segment of the process. It involves the ability to remember, focus on, and effectively analyze and evaluate these factors.

These techniques of multiplicity thinking, making notes where needed, and prudently holding back on conclusions, are powerful techniques leading to the best generation and selection of a solution.

BE ACUTELY AWARE OF THE PRINCIPLES AND PROCEDURES

- Be aware of what you are doing and recognize what component you are working on, in the home run problem solving and decision making process as you journey through it. Be conscious of and focus on what phase you are working on in the procedure... defining the problem, analyzing the cause, establishing objectives, generating solutions, choosing one, implementation... and so on. Being able to focus on a category of the process to achieve an effective result is a major principle of home run problem solving. You will be far more efficient, effective, confident and self-correcting in the process.
- Learn to distinguish and identify the *elements* of a problem and the causes. In the high school vibration problem, the problem elements were the fans, rpm's, motors, isolators, structural steel, concrete floors and so on.
- Deliberately apply the major *principles* of dynamic problem solving and decisionmaking, such as considering all possible causes, seeking alternate solutions, holding back on conclusions and choices until adequately prepared, generating and listing multiple factors in the various categories of the process.
- Deliberately apply the major *skills* in the home run process, such as the various methods of getting information, productive imagination and creativity, sound reasoning, and being open-minded.
- Dynamic problem solving and effective decision-making is a *complete process* from the time the problem occurs through the final enactment of the successful resolution. It is the entire process from inception to achievement.

- Follow the same process of resolution with *sub-problems as with main problems*. Subproblems will normally involve a definition of the sub-problem, and some or all of the other components in the process—cause, objectives, options, evaluation, decisionmaking and implementation. *In the high school vibration problem one of the sub-problems is how to test out if the vibration isolators for the fans are doing the job they are designed to, and if they are part of the cause or not.*
- *Don't necessarily follow a rigid sequence* or step-by-step procedure in the home run problem solving and decision-making process. Rather, follow a more general, multi-directional type thought process, dependent on how your mind responds to the exposure to the information, elements and relationships, of the problem. "You learn the skills and combine them to play the game as circumstances dictate."
- On the other hand, don't jump around haphazardly. Once working with a category of a problem, such as the problem definition, objectives or options, generally stick with it until getting something substantial done. Then jump onto other categories of problem.
- *Follow practical more easygoing approach*. Dynamic problem solving and decision making does not necessarily require that you function like a computer, or that you apply complex and sophisticated techniques.

Hitting home runs in problem solving and decision-making is a personal and concrete mental process. It is your brain, memory bank, senses, reasoning, and the accumulation and processing of information in the mind that guides you successfully through the process, not ultra-sophisticated mathematical methods.

OUTLINE OF PRINCIPLES AND PROCEDURES OF HOME RUN PROBLEM SOLVING

The most important principles and procedures of thorough, systematic, accurate and complete problem solving and decision making covered in this chapter are as follows:

PROBLEM, CAUSE, INTER-RELATIONSHIPS

- Become familiar with the *problem*. Gather information. Identify, analyze and define the problem.
- Examine possible causes and suspend judgement until verified. Troubleshoot. Diagnose.
- Identify and understand relevant problem elements and inter-relationships.

OBJECTIVES AND **O**PTIONS

- *Thoroughly establish and evaluate objectives* and conditions that the solution must meet.
- Generate and evaluate *optional solutions*.
- *Hold back* on the choice of an option until sufficient preparatory work on the problem has been completed.
- *Pause* at various times in the process to allow the subconscious mind to clarify items, make connections, generate ideas and solutions, be creative, and allow for mental digestion.

Evaluation of Possible Solutions

- Determine good and bad effects of optional solutions.
- Determine *risks*. Evaluate the risk-to-reward ratio as required.
- Determine *odds* of success or failure of options.
- Confirm relevant *assumptions*, relationships, information, generalities, theories, etc. Scrutinize fixed beliefs, biases, and prejudices.

Comparing Options Against Master List of Objectives and Making Decision

- Compare and evaluate optional solutions against master list of prioritized objectives.
- Rate the various optional solutions. Follow process of elimination.
- Select the solution that best *satisfies* the prioritized objectives and conditions, and best eliminates the causes. Make decision.

Implementation

- Determine how to *best implement* chosen solution.
- Identify and resolve *implementation* problems.
- Plan and schedule. Take action in an effective and timely manner.
- Monitor, follow up and modify as required.

The foundation of home run problem solving in technical management is high performance problem identification and analysis, accurate cause diagnosis, prioritized objectives of solution, effective generation of optional solutions, sound decision making, and productive implementation.

Figure 6-2. These are the major components of home run problem solving and decision making with which a home run hitter is involved.

VIBRATIONS IN HIGH SCHOOL BUILDING

SAMPLE CASE HISTORY

Here is an actual case history of a problem in a newly constructed high school in the Chicago area illustrating the application of the principles and procedures of home run problem solving and decision making, which I was involved in some years ago. Sample filled in forms follow along with more detailed explanations of the hitting home runs principles and procedures.

Problem

The heating and air conditioning equipment in the mechanical room of the newly constructed high school vibrated, rumbled and was very noisy. The library, which was adjacent to the mechanical room, was intolerable. Tremors shook the bookcases, tables, and chairs, as if there were a mild earthquake. Blinds, floors and ceilings vibrated. The lockers in the locker rooms underneath the mechanical room shook and rattled. The school personnel and school board were horrified and in a rage.

The vibrating, rattling, and throbbing were really resulting symptoms and effects of some root cause. The problem was to search out the root cause.

Information and Research

The mechanical room had almost 30 large pieces of rotating equipment, fans, compressors, chillers, pumps, etc. sitting on extremely heavy concrete inertia blocks with spring isolators. All of this live weight was sitting on a lightweight three-inch-thick concrete floor and metal pan.

POSSIBLE CAUSES

It was finger-pointing time by all parties—the engineer, architect, air conditioning contractor, piping contractor, vibration isolator manufacturer, fan supplier, balancing contractor, and sound consultant. Initially, all were either defensive or blamed others. No one wanted to get stuck with the blame and responsibility of having to stand the cost of rectifying the problem. The architect and engineer were protecting their reputation and blaming the HVAC contractors.

However, despite the protective stances taken, inspections of the building and equipment were made, ideas on potential causes brainstormed, and a list of possible causes was made as follows:

Figure 6-3. Elevation cross section of mechanical room with 30 pieces of rotating equipment transmitting vibrations and loud rumbling noises to the floor of the equipment room, and to adjacent areas of the library and locker rooms.

- 1. Possible out of *balance* fans.
- 2. Incorrect vibration isolators used under fans.
- 3. Throbbing ducts passing through floors and partitions connected directly to building.
- 4. Locker room ceiling hung from vibrating high velocity ductwork.
- 5. *Air pulsations* in fan housings.
- 6. Throbbing ducts pressed against *joists and beams*.
- 7. Incorrect acoustical lining in ductwork.
- 8. *Debris wedged* under concrete inertia blocks, which equipment was set on, transmitting vibrations to building.
- 9. Thin, 3" thick, *lightweight concrete floor* in equipment room; insufficient mass to absorb vibrations from such a large equipment load.

OBJECTIVES

There were objectives common to all parties involved, personal interest objectives of individual parties, and some conflict-of-interest issues, which were not necessarily stated or publicized. Their collective objective:

The overall goal was to *rid the building of the vibrations* and loud rumbling as quickly as possible, achieving at a minimum short-term acceptable results without total disruptions of the school operations. Further objectives were:

- 1. The school faculty and staff, the school board, and the architect and design engineer weren't interested in whose fault it was initially. They just wanted *immediate action*, no matter who was responsible or who paid for the rectification.
- 2. The mechanical contractors wanted to *determine the true cause first*, and not waste time and money on trial and error solutions based on assumptions or self-protection, which might not work in the end.
- 3. The mechanical contractors involved in doing the work, wanted to know *who pays for the work* they will do testing and rectifying the problem, before they do it, if it is deemed not their responsibility in the end.
- 4. The school wanted it corrected without *closing the school down*.
- 5. The school wanted it corrected *without turning heating/cooling systems* off while school was occupied.
- 6. The school did not want to shut down the effected areas if possible.
- 7. The corrective measures could not violate the parameters of *comfort, health or building code requirements,* etc.
- 8. The corrective measures in the end should be in an acceptable realm of the *specifica*-*tions, contracts, and performance requirements*.

9. The long-term solution must be a *permanent* one.

OPTIONS

A list of optional solutions was generated based on the possible causes; however, they were to be selectively tested out first, to determine if they would really solve the vibration problem, before implementing them overall.

- 1. Balance select fans
- 2. Replace vibration isolators under fans.
- 3. Reduce air quantities from fans by lowering Rpm's.
- 4. Isolate ducts through floor and partitions from building.
- 5. Install special sound baffles in fan housings.
- 6. Install special airflow baffles in fan housings to get rid of pulsations.
- 7. Clad ducts with special lead and sponge rubber.
- 8. Clean out construction rubble under concrete inertia blocks.
- 9. Any or all of the above.

TESTING

Tests were made to establish the cause of the vibrations and noise by a process of elimination. A priority sequence was established in order of the likelihood of being the actual cause.

- 1. Select fans were rebalanced, vibration isolators checked.
- 2. Ducts detached from direct contact with building.
- 3. Debris cleaned from underneath the equipment inertia blocks.
- 4. Acoustical lining material in ducts tested for sound absorption.
- 5. Heavy lead sound baffles put in a fan housing.
- 6. Airflow baffles put in a fan housing to counter pulsations and rumbling in the housing and in the ductwork.

And so on down the list of possible causes.

None of these tests had any effect on the vibrations and rumbling, and all the cause and effect theories up to that point in the problem solving process, were thrown out. The fans were in balance, isolators were correct per specifications, etc.

FURTHER INFORMATION, RESEARCH, CONSULTING NEEDED

Until this time the architect and engineer avoided any talk about the lightweight concrete floor used for the mechanical room floor, and the fact that the mechanical contractors questioned this during the course of construction. The thought of the floor being the reason leading to the this violent vibration problem was irreconcilable in their minds.

However, the superintendent of the high school district, not influenced by the fears of the architect and engineer and their reputations, called a special meeting in his offices. A representative of the HVAC contractor, a school board member, and a mechanical engineer who happened to be an expert on building vibrations were requested to attend.

The school board member came to the meeting with an instrument for measuring vibration frequencies and amplitudes of solid bodies such as concrete floors and equipment. He recommended that the vibrations of the mechanical room floor and the 30 pieces of equipment be measured and compared.

True Cause and Effect Relationship

Thus, the three went to the high school and measured the vibrating frequencies and deflection of the concrete mechanical room floor and the fans. The expert checked to see if any equipment was vibrating or running at an rpm in the same range or multiple of harmonic frequencies as the floor. He found several large fans were at close harmonic frequencies with the concrete floor.

The relationship of simultaneous harmonic frequencies between different bodies in contact with each other produces a massive combined geometric increase in force. This is a principle of physics. This was vaguely suspected and was in the back of many people's minds, but no one was versed enough to bring it out and test for it.

Hence, a combined harmonic frequency effect of the mechanical equipment room floor and the equipment in it, can be a major problem, because it can set up an amplified deflection in the floor and be transmitted to adjacent connecting parts of the building.

This is similar to the classical example of the bridge collapsing when the soldiers marched across it with a cadence that was a harmonic frequency of the bridge.

FURTHER TESTING

After further investigation of the situation it was found that some of the fans were in the harmonic frequency range of the floor. As a test, the two fans with a frequency closest to that of the floor, were *turned off* to see what would happen. Ninety percent (90%) of the vibrations and rumbling stopped, thus confirming the true cause, a simultaneous harmonic frequency situation!

Decisions and Implementation

It was finally decided that the best solution was to lower the operating speeds of these two fans about 15% to 20% in order to get them off the harmonic frequency. This was still in a range of tolerance in regard to ventilation code and heating cooling requirements meeting those absolute objectives. New drive packages were installed on the fans accordingly.

The fans were turned at the lower operating speeds and *the vibrations and rumbling virtually disappeared*. A home one was hit and this proved to be an acceptable solution to all. All readers of this case history who suspected the cause to be a harmonic frequency one—give yourself an "A" in home run problem solving.

Points to Note:

Many of the principles and procedures of home run problem solving, troubleshooting and decision making were employed in this case history:

- 1. Extensive information was gathered and a number of tests were conducted regarding the problem description, the possible causes and possible solutions.
- 2. Extensive notes were made during the course of the problem solving process covering the description of the problem, symptoms, causes, tests, optional solutions, etc. These notes promoted easier focus and evaluation of the various factors in the problem, and better communications and interaction between the parties involved.
- 3. The cause in this actual problem was hidden and elusive to most of the parties involved. The self-interest of the architects, engineers, contractors, owner, etc. was defensive and blaming. A lack of expertise in this particular sphere of knowledge clouded everyone's thinking.
- 4. A process of elimination of the possible causes was employed. Finally an expert, who had experience with this type of problem, was consulted and this led quickly to the resolution.

BECOME THOROUGHLY FAMILIAR WITH THE PROBLEM, DEFINE ACCURATELY

If you don't know what the problem is, if you are guessing or are assuming what it is, if you are skimming over it and not becoming adequately appraised of it, if you don't know what the deviation is—it means that you really don't know what is wrong. As a result you don't have a sound direction to go in, nor really know what is the right action to take to resolve the problem.

Getting to know the problem means gathering enough information on it, analyzing it, and defining it sufficiently to insure that your understanding is complete and accurate. Know what the problem is, fully and explicitly, before making a decision and taking action.

- 1. *Become familiar* with the problem—the overall problem and any sub problems involved.
- 2. *Gather information*. Make observations, examinations, and tests as required. Make notes, sketches, etc. as required. Plan and schedule this work, both long and short term if required.
- 3. Assess the *importance, urgency and size* of the problem. Decide if the problem will be *confronted* or not, and whether it is a short-, immediate- or long-term situation.
- 4. Make a *brief problem statement* for a convenient identification and reference, and a broader, more detailed overall statement.
- 5. Note problem *symptoms*, syndromes, indicators, conditions, and events that occurred prior to the occurrence of the problem,
- 6. Note the *general and specific aspects* of the problem as required in terms of *what*, *where, when and extent (www.e)*. Go from general aspects of the problem to more specific ones.
- 7. Determine, define, clarify, and state what the *deviation* is, if not obvious and it is required. Become familiar with the *standards*, *norms*, needs, desires, etc. of the particular problem situation.
- 8. Determine what the problem *is as well as what it is not*. Note what has *changed and not changed*.
- 9. Note *cause and effect relationships* and what elements are involved in the problem. Determine if cause diagnosis is needed or not.
- 10. *Consult with others* such as those who are involved or effected by the problem in some way, or experts in the area, as needed.
- 11. Be aware that there can be *different stages* in a problem situation, that is, a series of cause and effect events, and that you are usually focusing on a certain stage, which you are defining as the problem. Be aware whether you are just *treating the symptoms* of the problem, some intermediate state in the sequence of events, or the actual root cause.
- 12. Conclude with a full valid definition of the problem.

PROBLEM WORK SHEET

Hitting Home Runs by Wendes

Date: September 5, 1996

Page_____of _____

PROBLEM......(brief statement): Vibrations in high school building.

OVERALL PROBLEM:

The equipment in the mechanical room vibrates and rumbles, effecting adjacent areas so badly that these areas cannot be occupied.

General Area or	PROBLEMS (main problems and sub-problems)		Possible Key Causes or		
Category	General Description	Specifics	Options		
	Extreme vibrations and rumbling in the equipment room being transmitted to adjacent school areas.	Library and locker rooms	Mechanical equipment. Light weight flr.		
	In the library bookcases, tables, chairs, blinds, floors and ceilings vibrate and shake.				
	Lockers in the locker room below the mechanical room shake and rattle.				
	Rumblings and noises in library and locker room are loud.				
	The areas cannot be used by students.				
	Other parts of school effected somewhat.				
	The situation may be dangerous and cause damage to the equipment and the building.		Close school. Shut down sys's. Resolve problem		

Assessment of Problem: Importance: urgency, size, complexity. Type problem. "State" problem is in. Risks of problem. Extremely important, urgent, complex mechanical type problem.

EXAMINE POSSIBLE CAUSES AND SUSPEND JUDGEMENT UNTIL VERIFIED

Cause diagnostics involve considering a thorough relevant list of possible causes of the problem (when the cause is not obvious or known), and suspending judgment until the true causes are verified.

- 1. *List all the possible causes.* Brainstorm initially and add to it as you go along. Hold back on a conclusion on the causes until the actual one(s) are validated.
- 2. *Initially, examine the list of possible causes and weed out obvious non-contenders.* Using judgment, logic and whatever information is available, determine which are the most likely ones, and trim the list down to the most feasible possibilities. Where possible, rate the degree of possible effect of each on the problem.
- 3. Gather relevant information on the possible causes. *Make observations, examina-tions, tests,* measurements and calculations, as required. Consult with others involved in the problem, and with experts as needed.
- 4. *Note symptoms, syndromes, indicators and conditions*. Note the current conditions and events. Determine the prior events and conditions, when the problem occurred. Compare to see if any have changed. Check current and prior inter-relationships of elements.
- 5. *Note and describe the general and specific aspects* involved with the causes, the *what*, *where, when and extent (www.e).*
- 6. Apply a systematic process of *elimination or confirmation* of the possible causes, by logic, evidence, obvious factors and tests. In tests, research and studies, isolate causes as required in a controlled process.
- 7. *Identify the relevant cause-and-effect relationships,* correlations, patterns, formulas, theories, principles, etc. Note structural, functional, spatial and time relationships.
- 8. Note, evaluate, and distinguish between the different characteristics of evidence—*hard factual, circumstantial, second hand, assumed, biased, prejudicial, judgmental, etc.*
- 9. Consider that more than one cause may be involved. There can be: a) multiple contributing causes; b) additive effects of causes; c) interactive effects between causes; d) new combined effect of causes.

The high school vibration problem is a perfect example of a tough cause diagnosis involving many possible causes, where it is not easily apparent if there is only one cause or many contributing causes of the vibrations and rumbling. It is also not easily distinguishable if there are interactions between the various possible causes.

CAUSE WORK SHEET

Hitting Home Runs by Wendes

Date: September 5, 1996

Page_____ of ____

PROBLEM......(brief statement): Vibrations in high school building.

General Description, Symptoms, etc.:

Extreme vibrations and rumbling in mechanical room being transferred to adjacent school areas.

General	POSSIBLE CAUSES		1. Chances of being Cause,	
Area or Category	General Description	Specifics	2. Possible Degree of Effect	
	1. Out of balance fans.	Fans vibrating.	1:5, 33%	
	2. Incorrect vibration isolators used under fans.	Some close to bottoming out.	1:5, 33%	
	3. Ducts through floor connected directly to floor.	Conventional method.	1:50, 10%	
	4. Locker room ceilings hung for vibrating high-pressure ducts.	Common practíce.	1:50, 10%	
	 Throbbing ducts pressed against joists and beams. 		Low/low	
	6. Air pulsations in fan housings.		Low/low	
	7. Incorrect acoustical lining used in ductwork in mechanical rm.	2 inch thick,3 lb density.??	Low/low	
	8. Debrís wedgeð under equípment concrete ínertía blocks.	Bríck, wood and metal píeces.	1:1000 1%	
	9. Thin lightweight concrete mechanical room floor, insufficient mass to absorb vibrations from such a large equipment load.	3 inch thíck.	100:1 90%	

Information, Tests, Research Needed: Priorities of testing .:

ESTABLISH AND EVALUATE OBJECTIVES

Develop, establish, and evaluate a thorough range of relevant objectives and conditions, which the solution must satisfy. Put in terms of what you want to achieve, maintain and avoid. This is an absolute necessity in the home run problem solving and decisionmaking process.

The purpose of the master list of objectives is to more accurately and fully determine your requirements, needs and wants. It is to state what the results and conditions should be of the solution, plus be able to better focus on the factors. The process is to identify, establish, describe and evaluate the requirements that must be met by the chosen solution.

The list of objectives is beneficial in a number of ways: as guide in generating better possible *solutions* and as a checklist for making the best decision. It aids in planning what to work on in the problem. It expands perspectives and viewpoints, and avoids premature conclusions.

- 1. *List objectives at random at first, in a brainstorming manner*. Don't be too concerned about categorizing or rating the objectives in the initial listing. Let it be more of an uncritical listing.
- 2. *Expand* the master list as you go along as needed. Convert problem statements, causes, pros and cons of the optional solutions, and implement problems into master list objective statements.
- 3. Try to make *brief phrases*, starting with an action verb and a noun, such as "increase sales" or "reduce labor time."
- 4. State the overall goals or purpose of the solution.
- 5. *Add specifics* to the general objective statements as needed.
- 6. *Identify general areas of consideration,* standard categories, criteria, features, etc. as needed.
- 7. *Edit* the list, if required, before comparing the optional solutions against it.
- 8. Evaluate the *importance* of the factors. Determine which objectives are "absolutes." These are the most critical factors relative to the success of the solution. Rate the non-absolute objectives with some scale or value.
- 9. Allow objectives to *digest* and for the subconscious mind to evaluate them.

OBJECTIVES WORK SHEET

Hitting Home Runs by Wendes

Date: September, 1996

Page	of	
0.		

PROBLEM:

Vibrations in high school building

OVERALL GOAL: Rid the building of vibrations and loud rumbling as quickly as possible, achieving at a minimum short term acceptable results, while avoiding excessive disruption of the school operations.

General	OBJECTIVES	Importance	
Category of Consideration	General Description	Specifics	Ratings, Evaluations
	1. Immediate action by trades involved regardless of responsibility.	Inspections tests within few days.	Absolute requírement by school.
	2. Determine actual cause(s) first before full trial and error solutions.		Absolute by contractors.
	3. Know who pays for work done in the end if not their responsibility.	If over the normal svc amount.	Absolute by contractors.
	4. Correct without closing school down.	More than a few days.	Absolute by school.
	5. Correct without shutting HVAC systems down if possible, a minimum amount of time otherwite:	3 days in effected area.	Of major importance
	6. Avoid violating parameters of health, safety and code requirements in buildings	Must meet parameters 100%.	Absolute of school.
	7. Corrections should be meet an acceptable realm of the specifications, contracts, comfort, and performance requirements.	No greater deviation than 5 or 10%.	Absolute of school.

GENERATE MULTIPLE OPTIONS AND HOLD BACK ON FINAL CHOICE

Generating and considering multiple solutions for problems and holding back on making a choice is an absolute necessity in home run problem solving and decision-making. It greatly increases the odds of scoring the most runs, and ending up with the most beneficial solution.

- 1. List optional solutions initially in a non-restrictive, brainstorming manner.
- 2. Thoughts about the *effects of the various options*, about pros or cons, risks involved, and the odds of success or failure, that pop up initially or as you go along, should not be ignored. They should be simply noted, but not used to draw a final conclusion on an option. This means you shouldn't accept or reject it at that moment, unless it obviously violates an absolute objective.
- 3. Determine the *general plan of work,* which may be needed for generating the options. Determine if *testing or further information* is required on the development of the possible options.
- 4. *Expand* the list of possible options as you go along. Relate options to the problem, causes, inter-relationships, and objectives. Examine solution from similar situations. Consult with others.
- 5. Use your *imagination, creativity, and the subconscious mind* to generate options. Make pauses and let the subconscious mind do its job generating solutions and ideas, and clarifying things.
- 6. Describe options in general and specific terms, in terms of what, where, when and extent (*www.e*) as required.
- 7. Do an *initial rating* on the options on a rough judgmental basis and eliminate obvious poor options.
- 8. Draw sketches or diagrams; make charts or graphs, as required.
- 9. Plan further work on options, focusing and developing them on a priority basis.
- 10. Fill in the "*general area or category*" of the options, if this aids in understanding and organizing them better.
- 11. Resist bogus options and being pressured by others.
- 12. *Edit, consolidate, and reorganize the list as required,* when ready for the evaluation and decision phase.

C A B C

OPTIONS WORK SHEET

Hitting Home Runs by Wendes

of

Date September, 1996

Page____

PROBLEM......(brief statement): Vibrations in high school.

Information and Planning Needed: Make selective tests of possible options to determine if they are effective in reducing vibrations and noise, and determine to what degree.

General	OPTIONS (Possible solutions)	•	D-4	
Area or Category	General Description	Specifics	Katings,	
	a)Balance select fans.	Fans 1 and 6	Príority	
	b) Replace vibration isolators on fans with heavier duty type.	All fans	Príoríty test.	
	c) Reduce total air quantities of select fans by lowering RPM's.		Secondary test.	
	d) Isolate duct s passing through floors from the floors.	Hígh pressure ducts.	Minor	
	e) Install special sound baffles in fan housings.	AU	Moderate	
	f) Install air flow baffles in fan housings to get rid of pulsations.	AU	Moderate	
	g) Clad outside of ducts with vibration absorbing lead and sponge.	Hígh pressure ducts.	Minor	
	h) Clean out construction debris from under concrete blocks.	AU	Mínor	
	i) Add structural supports to bldg.	Where feasible.	Major	
	j) Close school and resolve problem.		Maíor	
Remarks: 7	 f) Install air flow baffles in fan housings to get rid of pulsations. g) Clad outside of ducts with vibration absorbing lead and sponge. h) Clean out construction debris from under concrete blocks. i) Add structural supports to bldg. j) Close school and resolve problem. 	All High pressure ducts: All Where feasible. The mechanical	Modera Minor Minor Major Major	

Remarks: Tests were made on all the above items on the mechanical systems and none had any effect on reducing the vibrations. The fans were in balance, isolators correct, etc. This left some possible strong link with the light weight floor.

Figure 6-8. The information and planning worksheet is an unrestricted form. The natural sequence of planned work and the results of the various actions can be thus recorded, as they occur. Also, use the information and planning worksheets when there is information, etc. that does not lend its self to recording on the categorized works sheets.

EVALUATE OPTIONS, COMPARE AGAINST OBJECTIVES, MAKE DECISION (Checkoff List)

EVALUATE:

- Effects of Optional Solutions. Determine the possible good and bad effects of the options. Determine possible side effects and interactions. Some of the good effects of the harmonic frequency solution in the high school vibration situation are that it gets rid of about 90 percent of the vibrations and rumbling, it's very low cost and can be done quickly.
- **Identify and evaluate risks of the options.** Determine the risk-to-reward ratio as required.
- **Determine odds of success and of failure** of the options, and the consequences thereof.
- **Confirmations**. Confirm questionable assumptions, information, theories, opinions, reasoning, feelings, etc., which are critical to the outcome of the problem. Question principles, theories, generalities, propositions, and premises which can often be suspect. Fixed beliefs, traditions, habits, prejudices, notions and precedents can be pitfalls. Illogical reasoning, false conclusions and inferences can be risky situations. Consider the uncertainties involved with the feasible solutions.

Compare:

- **Compare Options to Master List of Prioritized Objectives**. Determine how well or not options meet the master list of objectives and goals. Emphasis must be on the absolute objectives, rather than on those factors of less importance. *The harmonic frequency option meets most of the absolute requirements of the objectives 100 percent, determining true cause, immediate action, correct without closing school down, and minimal down time on two HVAC systems. It touches acceptable borderline limits on contractual, performance and code factors. Responsibility for who pays, everyone agrees, can be worked out, since the costs are minimal, and responsibility is shared among several parties.*
- Rate the finalists of the options.
- Make your decision accordingly.

WRITE IT DOWN

THE POWER OF NOTES, LISTS, SKETCHES, DIAGRAMS, CHARTS

Writing down information, making notes, lists, drawings and diagrams of the factors involved in problems can be extremely beneficial in home run problem solving.

Making notes is an organized recording function for more efficient recall and effective application of the principles and procedures of the home run problem solving process.

In general notes are needed if the problem is more complex, more critical in nature or involves many factors to remember (many major sub-problems).

Benefits of making notes, lists, diagrams and sketches:

- Writing down lists of factors for the various categories of the problem solving process results in more *complete consideration of the full range of relevant factors. It aids in opening up the mind and in promoting multiplicity thinking.*
- Helps to *remember* the various factors and essential information for utilization in the evaluation and decision phases. As the Chinese proverb states, "the weakest ink lasts longer than the strongest memory."
- Allows person to *focus*, not only on the various segments of the problem solving process more easily, but also on the particular factors of the problem in each segment.
- Making notes on factors helps in *suspending judgment* until all the required preparation is completed, giving more valid *conclusions*.
- It enables better *communication* on the problem with others, and provides a *written record* for future reference, reviews, and reports.

Organized Notes on Blank Sheets of Paper

If notes are made on *blank sheets of paper*, they must be grouped properly, according to the segment of the problem solving process they belong to, such as information on the problem, causes, etc. Allow enough space for each category. You are not trying to conserve paper in the process, but rather make clear, complete usable notes to reach the best solution.

Association/Recall Diagrams

Notes can be made as *association/recall type diagrams*. The biggest feature of the association and recall type diagrams is that related items can be grouped easily, and items can be added to their respective groups at any time. The diagram also functions as a relatively well-organized set of notes for easier recall and communicating with others.

The diagram relates better to the *actual interconnections in the human brain,* and hence the mind works better with this visual graphical approach.

Figure 6-9. The above is an example of a association/recall type diagram for listing the possible causes of the high school vibration problem.

BOTTOM LINE ON NOTES

The primary function in home run problem solving is thinking. Hence making notes must not be allowed to hinder thinking. Note taking and categorizing are only aids to thinking.

Thinking is the engine that drives the problem solving process. Making notes, however useful, is secondary.

Notes compensate for the weakness of the short-term memory, and for the inability of the human mind to handle too many factors. This limitation of the mind's subconscious over simplifies and adversely shortcuts the problem solving and decision making processes. Notes minimize chances of missing or skimming over factors, and potential confusion in the process.

Appendix A Blank Forms

Full-size, reproducible, blank testing and balancing forms for your use.

TESTING AND BALANCING AUDIT REPORT

	Date	
Job		
Location		
Architect	Phone	
Engineer	Phone	
Testing and Balancing Contractor		
Address		
City	State Zip	
Phone	_ Fax Number	

GENERAL INFORMATION

Job	Jo	ob No	Date
Location		······	
TYPE SYSTEM	S		
			<u></u>
		<u></u>	
	The second se	···· ··· ···	
DIFFUSERS AN	D REGISTERS		
Manufacturer			
Types			<u></u>
TERMINAL UN	IITS		
Manufacturer_			
Types			
INSTRUMENTS	S USED (Indicate Widdels)	🗖 Flow Hood	
□ Anemometer	······································	Thermal Anem	ometer
□ Manometers		□ Magnehelics	<u></u>
□ Volt-Ammete	r	Tachometer	
BUILDING AN	D SYSTEM COMPLETION CH	ECK OFF LIST	oors 🗆 Ceilings
Flectrical	□ Walls □ Roor □ Floors	nsformers Tested	□ Wiring
Controls:	Control Motors Linkages [Compressors [] S	tats Tubing Wiring
Piping:	□ Coils □ Valves □ Piping	\Box Pumps \Box V	Viring
Sheet Metal:	□ Grilles □ Fins □ Drives □ Air	• Handling Units 🗆	Filters □ Wiring
. .			
Kemarks		······································	

FAN TEST REPORT

Job				Job No	Da	ite					
Location					Syst	em					
Equipment Location_			Serves		Fested	By :					
Air Handling Unit	□Roof To	p Unit	Fur	nace 🔲 Supply Fa	an 🗌 Ex	haust Fan	🗌 Pkg	Unit			
	nstant Vol	ume 🔲	VAV								
FAN	DATA			MOTOR							
Manufacturer				Manufacturer		Serial N	10.				
Model Size				Frame No.		Туре	T	ŪU			
Type Fan Centr	igal □Ro □Vane Ax:	of Exh ial □P	aust rop.	Svc. Fact.		Rated	Act	ual			
Type Wheel Backwa	nd Incline d Curve 🔲	□ Air F Paddle W	oil heel	внр	5						
Wheel: Alignment OK	□Gap □Fa	stened [Clean	Amps, L ₁ L ₂	L ₃						
Belts C	to C Dist	ance		Voltage, L ₁	L ₂ L ₃						
Pulleys: Fan Dia.	Mot.	Dia.		RPM							
Motor Movement				Phase							
Bearings Zerk Seal	Cut Off	Plate	OK								
					STA	RTER					
FAN PE	RFORMANCE			Manufacturer		Mode	1				
	Design	Act	ual	Starter Size		Class					
Fan CFM		ļ		Overload: Re	quired	Size					
Outlet CFM Total		L		Ac	tual						
Fan RRM											
Fan S.P.				STA	TIC PRE	SSURE DROPS	5				
					Upstrea	Downstrea	To D	tal ron			
CONT	ITIONS			Filter							
Vortex Damper Posit	ion			Heat. Coil							
Outside Air Damper	Setting			Cool. Coil							
Return Air Damper S	etting			Fan Inlet							
Filter Conditions				Fan Discharge	<u>.</u>						
Coil Conditions				Total H	an S.P	•					
Temperatures											
0A:	DB	WB	RH			,,,,,					
RA:	DB	WB	RH	<u> </u>							
Mixed Air:	DB	WB	RH								
Discharge	DB	WB	RH	~ ~~							
Space:	DB	WB	RH			· · · · ·					
Duct Temp. Drop	DB										
Remarks											

Wendes Engineering and Contracting Services

7/80 Form TAB 201

OUTLET AIR BALANCE REPORT

Project _____

_____ Job No._____ Date _____

Location _____

_____ System ___

Instruments Used ______Tested by:______

ROOM		OPE	NING		REQUIRED		PRELIMINARY			FINAL	
AREA SERVED	No.	Model	Size	A _k	Vel	CFM				Vel	CFM
						-					
										1 1 1	ļ
											ļ
							L				
											ļ
									ļ		ļ
Remarks											

Wendes Engineering and Contracting Services

HVAC SYSTEMS RECAP SHEET

	LOCATION	S	ГАТ	US	CF	M or GPM		R	PM	S.I Ft I	S.P.or Et Head		PS	TONS	мвн	
SYSTEM OF EQU	OF EQUIPMENT	1	2	3	Design	Actual	Percent of Design	Design	Act	Des	Act	Des	Act	Cool	Heat	REMARKS
		_														
																· ·
	W 10 14 - Jon	-					-			+				1		
	•····			<u> </u>						<u> </u>						
				 										<u> </u>		
							<u> </u>				<u> </u>					
			╞	┢												
			╞				1							-		
				┼──	 			<u> </u>						1		

1. System ready for balancing 2. Equipment checked out 3. System balanced

						3	Job N	o		Dat	:e			
loca	ation									Sys	stem			
Loca	tion of 1	Duct									_ ¥	SP_		<u> </u>
Juct	: Size			Required (CFM			Re	quire	1 FP	4			
Juct	t Area		Sq Ft	Actual CF	1			Ac	tual F	PM				
Per	cent of D	esign:	= <u>Actua</u> Requi	1 CFM red CFM	= ()	=	<u> </u>					Init
-	1	2	3	4	5		6		7		8	7		Final Read
	VP FPM	VP FPM	VP FPM	VP FPM	VP FPM	VP	FPM	VP	FPM	VP	FPI	1		
A	0	0	0	0	o		0		0		o	¥/	2	
в	o	0	0	0	ó	 	0		0		0	Y	+	-
_	0	0		0	 0		0		0		0	1		-
-														
D	0	0										4	Î	
Ε	, o	0	0	0	0		0		0	_	•	1	*	-
F	¢	¢	¢	¢	¢		ф		ф		•		*	-
ımn	→											_=	Tot	al
115	X/2	x J				;	-		*	;	<u> </u>	> C	olum	ns
	ΓT	1		ן: הנוכיד עז	ן הידים		I		I		I	1	/	
۱.	Divide re	commended	spacing	into duct		OTAI	L)	(Ň	Ľ_		
	width for	equal sp	acing bet	ween poin	ts'AL <u>L C</u> / Tot	al No	.)	$\frac{1}{(}$			<u>'</u>	= [
2.	Split rem	ainder in	half for	spacing	at of	point	ts)	\ 0.111/E			/ 0.504	A	vera	.ge F
	sides of	duct and	write in.		VP	FPM	L VP F	PM	VPF	PM		FPM	VP	FPM
3.	total the columns t	FPM in e ogether a	ach colum nd divide	n, add th by total	e .01 .02 .03 .04	400 566 693 801	.31 .32 .33 .34	230 2260 2301 2335	.61 3 .62 3 .63 3 .64 3	127 153 179 204 229	.91 .92 .93 .94	3821 3842 3863 3884 3904	1.21 1.22 1.23 1.24	4405 4423 4442 4460
	RECOMMENT	ED EQUAL	SPACING E	ETWEEN	.06 .07 .08 .09	981 1060 1133 1201	.36 .37 .38 .39	2403 2436 2469 2501	.66 3 .67 3 .68 3 .69 3	254 279 303 327	96 .97 .98 .99	3924 3945 3965 3985	1.26 1.27 1.28 1.29	4495 4513 4531 4549
	F	OINTS OF	READING		.10	1266	.40 4	2533 2563 2595	.71 3	375 398	1.00	4005	1.30	4583
	Width F	lange Inches	Spaci in inc	ng hes	.13 .14 .15	1444 1498 1551	.43 .44 .45	2626 2656 2687	.73 3 .74 3 .75 3	422 445 468	1.03 1.04 1.05	4064 4084 4103	1.33 1.34 1.35	4619 4636 4653
	8-1	4	5		.17 .18 .19	1651 1699 1746	.47 .48 .49 .50	2746 2775 2804 2832	.77 3 .78 3 .79 3 .80 3	514 537 560 582	1.07 1.08 1.09 1.10	4142 4162 4161 4200	1.37 1.38 1.39 1.40	4688 4705 4722
	<u>15-2</u> 25-3	36	7		.20									47.33
	<u>15-2</u> 25-3 37-4 49-6	36 18 00 72	7 8 9	· · · · · · · · · · · · · · · · · · ·	.20 .21 .22 .23 .24 .25	1835 1879 1921 1962 2003	.51 .52 .53 .54 .55	2860 2888 2916 2943 2970	.81 3 .82 3 .83 3 .84 3 .84 3	604 625 657 669 690	1.11 1.12 1.13 1.14 1.15	4219 4238 4257 4276 4295	1.41 1.42 1.43 1.44 1.45	4756 4773 4790 4806 4823

PITOT TUBE TRAVERSE, RECTANGULAR DUCT

PITOT TUBE TRAVERSE, SMALL ROUND DUCTS

Distance from side of duct to point of reading to nearest $1/8\,\text{th}$ inch for 6 point traverse.

		POINTS										
Duct Dia.	1	2	3	4	5	6						
3	1/8	1/2	7/8	2 1/8	2 1/2	2 7/8						
4	1/8	5/8	1 1/8	2 7/8	3 3/8	3 7/8						
5	1/4	3/4	1 1/2	3 1/2	4 1/4	4 3/4						
6	1/4	7/8	1 3/4	4 1/4	5 1/8	5 3/4						
7	1/4	1"	2"	5"	6"	6 5/8						
8	3/8	1 1/8	2 3/8	5 5/8	6 3/4	7 5/8						
9	3/8	1 3/8	2 5/8	6 3/8	7 5/8	8 5/8						
10	3/8	1 1/2	3"	7"	8 1/2	9 1/2						

CONVERTING VP INTO FPM

Times Duct Area

= Total CFM

VP FPM	VP FPM	VP FPM	VP FPM	VP FPM
.01 400	.31 2230	.61 3127	.91 3821	1.21 4405
.02 566	.32 2260	.62 3153	.92 3842	1.22 4423
.03 693	.33 2301	.63 3179	.93 3863	1.23 4442
.04 801	.34 2335	.64 3204	.94 3884	1.24 4460
.05 895	.35 2369	.65 3229	.95 3904	1.25 4478
.06 981	.36 2403	.66 3254	.96 3924	1.26 4495
.07 1060	.37 2436	.67 3279	.97 3945	1.27 4513
.08 1133	.38 2469	.68 3303	.98 3965	1.28 4531
.09 1201	.39 255	.69 3327	.99 3985	1.29 4549
.10 1266	.40 2533	.70 3351	1.00 4005	1.30 4566
.11 1328	.41 2563	.71 3375	1.01 4025	1.31 4583
.12 1387	.42 2595	.72 3398	1.02 4045	1.32 4601
.13 1444	.43 2626	.73 3422	1.03 4064	1.33 4619
.14 1498	.44 2656	.74 3445	1.04 4084	1.34 4636
.15 1551	.45 2687	.75 3468	1.05 4103	1.35 4653
.16 1602	.46 2716	.76 3491	1.06 4123	1.36 4671
.17 1651	.47 2746	.77 3514	1.07 4142	1.37 4688
.18 1699	.48 2775	.78 3537	1.08 4162	1.38 4705
.19 1746	.49 2804	.79 3560	1.09 4181	1.39 4722
.20 1791	.50 2832	.80 3582	1.10 4200	1.40 4739
.21 1835	.51 2860	.81 3604	1.11 4219	1.41 4756
.22 1879	.52 2888	.82 3625	1.12 4238	1.42 4773
.23 1921	.53 2916	.83 3657	1.13 4257	1.43 4790
.24 1962	.54 2943	.84 3669	1.14 4276	1.44 4806
.25 2003	.55 2970	.85 3690	1.15 4295	1.45 4823
.26 2042	.56 2997	.86 3709	1.16 4314	1.46 4840
.27 2081	.57 3024	.87 3729	1.17 4332	1.47 4856
.28 2119	.58 3050	.88 3758	1.18 4350	1.48 4873
.29 2157	.59 3076	.89 3779	1.19 4368	1.49 4889
.30 2193	.60 3102	.90 3800	1.20 4386	1.50 4905

Wendes Engineering and Contracting Services

7/80 Form TAB 204a

PHOT TU	IRF I	RAVERSE	, LARGE I	ROUND DUCIS
Job			Job No	Date
Location				System
Location of Duct	Are:	a Served	Duct Tempera	tureG_SP
Duct Diameter		Required CFM		Actual CFM
Duct Area	Sq Ft			Actual FPM
Percent of Design:	= <u>Ac</u> Re	tual CFM quired CFM	= ()	percent

I ADOE DOUND DUCTO -

TRAVERSE POINT LAYOUT

Distance from side of duct to point of reading to nearest 1/8th inch for 10 point traverse.

DUCT DIA.	1	2	3	4	5	6	7	8	9	10
12	3/8	1	1.3/4	2-3/4	4-1/8	7-7/B	9.1/4	10-1/4	11	11-5/8
13	3/8	1	1-7/8	2-7/8	4-1/2	8-1/2	10-1/8	11-1/8	12	12-5/8
14	3/8	1-1/8	2	3-1/8	4-3/4	9-1/4	10-7/8	12	12-7/8	13-5/8
15	3/8	1.1/4	2.1/4	3-3/8	5-1/8	9-7/8	11-5/8	12-3/4	13-3/4	14-5/8
16	3/8	1-1/4	2-3/8	3-5/8	5-1/2	10-1/2	12-3/8	13-5/8	14-3/4	15- 5/8
17	1/2	1-3/8	2-1/2	3-7/8	5-3/4	11-1/4	13-1/9	14-1/2	15-5/8	16-1/2
18	1/2	1.1/2	2.5/8	4-1/8	6-1./8	11-7/8	13-7/8	15-3/8	16-1/2	17-1/2
19	1/2	1.1/2	2-3/4	4-1/4	6-1/2	12-1/2	14-3/4	16-1/4	17-1/2	18-1/2
20	1/2	1-5/8	2.7/8	4-1/2	6-7/8	13-1/8	15-1/2	17-1/8	18-3/8	19-1/2
22	5/8	1-3/4	3-1/4	5	7-1/2	14-1/2	17	18-3/4	20-1/4	21-3/8
24	5/8	2	3-1/2	5-1/2	8-1/4	15-3/4	18-1/2	20-1/2	22	23-3/8
26	5/8	2.1/8	3-3/4	5-7/8	8-7/8	17-1/8	20-1/8	22-1/4	23-7/8	25-3/8
28	3/4	2-1/4	4-1/8	6-3/8	9-5/8	18-3/8	21-5/8	23-7/8	25-3/4	27-1/4
30	3/4	2-1/2	4-3/8	6-3/4	10-1/4	19-3/4	23-1/4	25-5/8	27-1/2	29-1/4
32	7/8	2-5/8	4-5/8	7.1/4	11	21	24-3/4	27-3/8	29-3/8	31-1/8
34	7/8	2-3/4	5	7-3/4	11-5/8	22-3/8	26-1/4	29	31-1/4	33-1/8
36	1	3	5-1/4	8-1/8	12-3/8	23-5/8	27.7/8	30-3/4	33	35
38	1	3-1/8	5-1/2	8-5/8	13	25	29-3/8	32-1/2	34-7/8	37
40	1	3-1/4	5-7/8	9	13-5/8	26-3/8	31	34-1/8	36-3/4	39
42	1.1/8	3-3/8	6-1/8	9-1/2	14-3/8	27-5/8	32-1/2	35.7/8	38-5/8	40-1/8
44	1.1/8	3.5/8	6-3/8	10	15	29	34	37-5/8	40-3/8	42-7/8
46	1-1/4	3-3/4	6-3/4	10-3/8	15-3/4	30-1/4	35-5/8	39-1/4	42-1/4	44-3/4
48	1-1/4	4	7	10-7/8	16-3/8	31-5/8	37-1/8	41	44	46-3/4

	READINGS								
TRAVERSE	At S	tartup	Fir	nal					
FOINIS	V.P.	FPM	V.P.	FPM					
1									
2									
3									
4									
5									
6			L						
7									
8									
9									
10									
1									
2									
3									
4									
5				L					
6									
7									
8									
9									
10									
Total FPM			ΝΛ						
Divided by	20 =] \ [
Times Duct	Area		$1 \land 1$						
= Total CF	M		V						

Wendes Engineering and Contracting Services

Form TAB 204b

٦

PUMP TEST REPORT

Job _____

Job No._____Date____ Location ______ System _____

Equipment Location ______ Serves _____ Tested by: _____

PU	MP DATA	
Manufacturer		
Model/Size		
Type Pump		
Impeller Size		
	Rated	Actual
GPM		
Total Ft.Head		
RPM		

PUMP PRESSURES										
	Design	Actual								
Static Hd(Pump Off)										
Discharge										
Suction										
Block Off: (Running	, no flow									
Discharge										
Suction										
Total										
Running:										
Discharge										
Suction										
Total										

MOTOR							
Manufacturer	Serial No.						
Frame No. Svc. Facto							
	Rated Acti						
HP, Nameplate							
Amps, L ₁ L ₂ L ₃							
Voltage, L ₁ L ₂ L ₃							
RPM							
Phase							

STARTER									
Manufactu	rer Model								
Size	Class								
Overload:	Required Size :								
	Actual:								

BHP [HPnp x Aa x Va Ar x Vr]	KWH	Volts	× √3 ¹ *×	Avg Amps ×	Yearly Hours - of Operation x P
	Per Year	=		1000	
		2			*(3 phase)
Remarks					
	n <u>a (</u>				
		•••••			

Wendes Engineering and Contracting Services

7/80 Form TAB 210

ob	<u> </u>							_ Job	No		Dat	e		
ocatior	1									<u> </u>	Sys	tem		
strume	nt Used.									Tes	sted 1	by:		
	<u> </u>		REQ	UIRED	BY	PASS		F	RELI	IINARY			FI	NAL
NO.	ITEM	SIZE	$\triangle P^1$	GPM	∆p	GPM	∆p	%	∆р	%	∆p	%	∆p	GPM
					 									
		+	1									<u></u> .		
<u>. </u>			 											
											Ŀ			
				1										
		_			ļ		ļ				<u> </u>			<u> </u>
				1	1									
	- <u> </u>													

WATER BALANCE REPORT Flow or Pressure Drop

Joh No

1. $\triangle P$: Can represent flow station differential or pressure drop across item. Remarks ____

Wendes Engineering and Contracting Services

7/80 Form TAB 211

WATER BALANCE REPORT

Temperature Measurements

Job	Job NoDate
Location	System
Instrument Used	Tested by:

COIL	ŜT7F		DESIGN				TEST FINAL			FINAL			
	314E	EWT	LWT	EAT	LAT	EWT	LWT	EAT	LAT	EWT	LWT	EAT	LAT
· · · · · · · · · · · · · · · · · · ·													
·····													
· · · · · · · · · · · · · · · · · · ·													
LRemarks	<u> </u>	L	L		L		· · ·	·	Ļ	•	1	L	L

Wendes Engineering and Contracting Services

7/80 Form TAB 212

CHILLER TEST REPORT

Job _____

_____Job No._____Date_____

Location_____

Equipment Location ______ Serves _____ Tested by: _____

_____ System _____

COMPRESSOR DATA				
Manufacturer				
Model/Size				
Туре				
Capacity	tons @	GPM		
Refrigerant	Pounds			
KW	KW Per Ton			
Serial No.				

COMPRESSOR	Design	Actual
Suction Pressure		
Suction Temp.		
Discharge Press.		
Discharge Temp.		
Oil Temp/Press.		

EVAPORATOR	Design	Actual
Refrig. Pressure		
Refrig. Temp.		
Ent. Water Pressure		
Lvg. Water Pressure		
Ent. Water Temp.		
Lvg. Water Temp.		
Flow GPM		

CONDITIONS
Refrigerant Level
Oil Level
Percent Cylinders Unloaded
Chilled Wat. Control Setting
Condenser Wat. Control Setting
Low Wat. Cutout Temp. Setting
Low Pressure Cutout Setting
High Pressure Cutout Setting

COMPRESSOR MOTOR					
Manufacturer	Serial No.				
Frame No.	Type Frame DT D				
Svc. Factor:	Rated	Actual			
HP, Nameplate					
BHP [HPnp x Aa x Va]					
Amps, L ₁ L ₂ L ₃					
Voltage, L ₁ L ₂ L ₃					
RPM					
Phase					

STARTER				
Manufacturer Model				
Size	Class			
Overload:	Required Size	:		
Actual:				

CONDENSER	Design	Actual
Liquid Line Pressure		
Liquid Line Temp.		
Ent. Water Press.		
Lvg. Water Press.		
Ent. Water Temp.		
Lvg. Water Temp.		
Flow GPM		

KWH	Volts × 1.73 ×	Avg Amps ×	Yearly Hours of Operation	x PF
Per Year		1000		
K Per Remarks	Year			
Purge C	peration Che	ecked		
Crankca	ise Heater Cl	necked		

Wendes Engineering and Contracting Services

7/80 Form TAB 214

HVAC ENERGY AUDITING REPORT

	Date	
Job		
Location		
Architect	Phone	
Engineer	Phone	
Auditing Contractor		
Address		
City	State Zip	
Phone	Fax	

Energy Audit Forms for Your Use

BUILDING AND SYSTEM DESCRIPTION

Lat	itudeElevation	When Built
Α.	CATEGORY OF STRUCTURE	
Β.	BUILDING DESCRIPTION	
	Area, Sq Ft:	Number of Floors:
	Volume, Cu Ft:	Sa Et/Derson.
	Types of Areas:	
c.	CONSTRUCTION DETAILS Glass:	
	Exterior Walls:	
	Roof and Ceilings:	
	Floors:	
	Total Exposed Wall Area Sq Ft:	·
	Total Glass Area Sq Ft:	Percent
D.	HOURS OF OCCUPANCY AND OPERATION	
	Working Hours:	
	Lighting Hours:	
	HVAC Hours:	
	Computer Room:	
	Other:	
-		
E.	HEATING AND COULING STSTEMS DESCH	RIPTION
		<u>.</u>

Wendes Mechanical Consulting Services Co.

Energy Audit Forms for Your Use (Continued)

F.	ANNUAL ENERGY CONSUMPTION	
	Total Heating, Cooling, Electri	cal, Lighting Per Yr:
	Total BTU:	BTU Per Sq Ft:
	Total Energy Costs:	Costs Per Sq Ft:
	Electrical, Total KWH:	KWH/Sq Ft:
	Total Elec. Costs:	Costs/Sq Ft:
	Heating Fuels, BTU Per Yr:	Per Sq Ft:
	Total Fuel Costs:	Costs/Sq Ft:
G.	ORIGINAL ENVIROMENTAL DESIGN CONDI	TIONS
	Heating	
	Peak Heat Loss BTUH:	Degree Days:
	Design Temperatures:	
	Avg Winter Temp.:	Avg Winter Hours:
	Cooling	
	Peak Heat Gain BTUH:	Degree Days:
	Design Temperatures:	
	- J	
	Avg Summer Temp.:	Avg Summer Cool Hours:
	Air and Hydronic Flows	
	Supply CFM:	CFM/Sq Ft:
	Exhaust Air CFM:	Exh Air/Sq Ft:
	Min Outside Air CFM:	OA Per Person, Sq Ft:
	Make Up Air CFM:	
	HVAC GPM:	Domestic GPM:
н		
	Levels in Foot Candles.	
	Levels in Watts/Sa Et.	
	Type:	
Ŧ		
1.		Matarina
	Voltage:	Peter mg
	Voltage.	· · · · · · · · · · · · · · · · · · ·
J.	CONNECTED ELECTRICAL LOADS (KW'S)	
	Lighting:	Office Equipment:
	Heating and Cooling Equipment:	
	Air Handling and Exhausts:	
	Cooking:	Machinery:

Wendes Mechanical Consulting Services Co.

ELECTRICAL CONSUMPTION HISTORY

BUILDING	NG YEAR							
•	SIZE SQ FT							
			E	LECTRIC	AL COSTS			
MONTH	NO OF DAYS	KWH USED	COST PER KWH	DE	MAND CHARGE	POWER FACTOR ADJ	FUEL ADJ	TOTAL
JAN		***********	********	******	*********		2442352¥	
FEB			*				******	
MAR			*******					*****
APR						*****		
MAY		**					********	
JUNE								• • • • • • • • • • • • • • •
JULY								
SEPT								
NUV								
DEC	=====		*********		**********		*********	2222232323232
TOTAL AVG/MO	22335	22222425253	********		***********		*********	***********
	=====	************			=========	223222	********	=============

Wendes Mechanical Consulting Services Co.

Form AUD 303

FAN TEST REPORT

Job				Job No	Da	ite			<u> </u>
Location		System							
Equipment Location_		Şe	rves_	ŋ	fested	By :			
Air Handling Unit	Roof To	p Unit 🗌	Furna	ce Supply Fa	in 🗌 Ex	haust	Fan []Pkg	Ünit
	nstant Vol	ume 🛛 VA	V						
FAN DATA				MOTOR					
Manufacturer				Manufacturer Serial No					
Model Size				Frame No.	Туре 🛛 Т 🗋			Du	
Type Fan Centrigal DRoof Exhaust Inline DVane Axial DProp.			st p.	Svc. Fact.		Rated Actua			Ial
Type Wheel Backward Incline Air Foil				ВНР					
Wheel: 🛛 Alignment OK 🗆 Gap 🗇 Fastened 🗆 Clean			lean	Amps, L ₁ L ₂ L ₃					
Belts C to C Distance				Voltage, L ₁					
Pulleys: Fan Dia. Mot. Dia.				RPM					
Motor Movement				Phase					
Bearings Zerk Seal	Cut Off	Plate O	ĸ						
				STARTER					
FAN PERFORMANCE				Manufacturer Model					
	Design	Actua	1	Starter Size			<u>Class</u>		
Fan CFM				Overload: Required Size					
Outlet CFM Total				Actual					
Fan RRM									
Fan S.P.				STATIC PRESSURE DROPS					
					Upstre	aa Do	vnstream	Tot Dr	al
CONT	DITIONS			Filter					
Vortex Damper Position				Heat. Coil					
Outside Air Damper Setting				Cool. Coil					
Return Air Damper Setting				Fan Inlet					
Filter Conditions				Fan Discharge					
Coil Conditions				Total Fan S.P.					
Temperatures				-				_	
OA:	DB	WB	RH						
RA:	DB	WB	RH						
Mixed Air:	DB	WB	RH						
Discharge	DB	WB	RH	~					.
Space:	DB	WB	RH			<u> </u>			
Duct Temp. Drop	DB								
Remarks									

Wendes Engineering and Contracting Services

7/80 Form TAB 201
PUMP TEST REPORT

Job_____

_____Job No._____Date____

Location _____

_____ System _____ Equipment Location ______ Serves ______ Tested by: ______

PUMP DATA			
Manufacturer			
Model /Size			
Type Pump			
Impeller Size			
	Rated	Actual	
GPM			
Total Ft.Head			
RPM			

PUMP PRESSURES			
	Design	Actual	
Static Hd(Pump Off)			
Discharge			
Suction			
Block Off: (Running	, no flow		
Discharge			
Suction			
Total			
Running:			
Discharge			
Suction			
Total			

MOTOR		
Manufacturer	Manufacturer Serial No.	
Frame No.	Svc.	Factor
	Rated	Actual
HP, Nameplate		
Amps, L ₁ L ₂ L ₃		
Voltage, L ₁ L ₂ L ₃		
RPM		
Phase		

STARTER		
Manufacturer Model		
Size	Class	
Overload:	Required Size	:
	Actual:	

	KWH	Volts	× √31*×	Avig x Amps	Yearly Hours — of Operation X P	
	Per Year	=		1000		
		=			*(3 phase)	
Remarks						
		•				
			· · ·			
Wendes Engineering and Contracting Services			÷.	7/8	0 Form TAB 210	

CHILLER TEST REPORT

Job ____

_____Job No._____Date_____

Location _____

_____ System ______ Equipment Location ______ Serves _____ Tested by: _____

	COMPRESSOR DA	ATA	
Manufacturer			
Model/Size			
Туре			
Capacity	ton	s@GP	M
Refrigerant		Pounds	
KW	KW Per T	on	
Serial No.			

COMPRESSOR	Design	Actual
Suction Pressure		
Suction Temp.		
Discharge Press.		
Discharge Temp.		
Oil Temp/Press.		

EVAPORATOR	Design	Actual
Refrig. Pressure		
Refrig. Temp.		
Ent. Water Pressure		
Lvg. Water Pressure		
Ent. Water Temp.		
Lvg. Water Temp.		
Flow GPM		

CONDITIONS
Refrigerant Level
Oil Level
Percent Cylinders Unloaded
Chilled Wat. Control Setting
Condenser Wat. Control Setting
Low Wat. Cutout Temp. Setting
Low Pressure Cutout Setting
High Pressure Cutout Setting

COMPRE	SSOR MOTOR		
Manufacturer	Serial	No.	
Frame No.	Type Frame	ΠT	00
Svc. Factor:	Rated	Actu	al
HP, Nameplate			
BHP [HPnp x $\frac{Aa}{Ar} \times \frac{Va}{Vr}$]			
Amps, L ₁ L ₂ L ₃			
Voltage, L ₁ L ₂ L ₃			
RPM			
Phase			

STARTER			
Manufacturer Model			
Size	Class		
Overload:	Required Size	:	
	Actual:		

CONDENSER	Design	Actual
Liquid Line Pressure		
Liquid Line Temp.		
Ent. Water Press.		
Lvg. Water Press.		
Ent. Water Temp.		
Lvg. Water Temp.		
Flow GPM		

кwн	Volts x 1.73 x	Avg Amps ×	Yearly Hours of Operation	x	PF
Per Year =		1000			
K Per Remarks	W's = Year				
Purge 0	peration Che	ecked			
🗌 Crankca	se Heater Ch	necked			

Wendes Engineering and Contracting Services

7/80 Form TAB 214

ELECTRICAL LOADS

EXISTING

NEW

Building							·	Date		
					===	========	=======	=====		
		HP	RAI	FED		HOURS OF	ACT AVE	UAL RAGE	KWH	CUSTS
ITEM		ÛR			рн	OPERATION PER		 VOLT	PER	PER
		К₩Н				YEAR	LOAD	LOAD	YEAR	YEAR
	• • • •									
							-			
					,- - -					
								-		
		-								
					·					
	=====			=======						=================
KWH/YEAR = 1.73	× I	x E x	HOURS			COSTS PE	R KWH =	\$0.07		
ndes Mechanical Consulting	Servio	1000 ces Co.							F	orm AUD 305
-										

ELECTRICAL LOADS RECAP

X	ΕX	IST	ING	

____NEW

BUILDING SUBURBAN OF	FICE BUILDING			Date	11-18-	1985
AIR HANDLING EQUI	PMENT X	Year Around	Summer	 Wir	nter	X Peak
	CONNECTED	HOURS OF	ACTUAL LOAD	ACTUAL KWH	COSTS	PERCENT
ITEM	КМН НР	PH PER	К₩Н ВНР	YEAR	VEAD	τοτοι
			=======			
						·
						.
						·
TOTAL			*********			
1 HP = 746 WATTS		COSTS PE	R KWH ≈ \$0.07		*********	

Wendes Mechanical Consulting Services Co.

Form AUD 306

					■,	NEIJ	
	PEAK PER HR	SEASUNAL		2121100	-	 	
Building					Date_		
Location				La	titud	e 	
Type Building		S	tories		When	Built	
Sq Ft Area			Cubic	Ft of Sp	ace		
Calculation 1	for Whole Building	For P	artial A	rea			
Budget Load: Sq F	t	x BTUYR/S	iq Ft		=		
Outside Design:	DB WB	Avg OA 1	emp.	Wi	inter	Hours	
Inside Design: D	3(day)	RH	DB(nig	ht)			
ITFM	DIMENSIONS	======================================	 U	TEMP DIFF	BTU:	Per Hour Seasonal	SEASONAL HOURS
ROOF OR CEILING	***************	*********			*****		
FLOOR	•••••						
GLASS							
DOORS							
WALLS							
COLD INSIDE WALLS							
VENTILATION				*******			
DUCT LOSSES							
GROSS TOTAL H	EAT LOSS	***********	2223222	22233333	2222:		*******
HEAT GAINS; LITES		************	*******	22223333			
PEOPLE	No. People =						
OFF. EQUIPMENT	HP =						
COMPUTERS	KW =				•		
TOTAL INTERNA	AL GAINS						
NET TOTAL BUILDING	G HEAT LOSS		******	8111111	====		
INPUT TO HEAT	ING EQUIPMENT, ef	ficiency =					
BTUH = Sq Ft x	U x Temp. Diff.	BTU/YEAR =	Sq Ft x		Temp.	Diff. x Wint	er Hours
Remarks				. 010/3	Q F17		

HEAT LOSS CALCULATION

Wendes Mcchanical Consulting Services Co.

Full Size Blank Testing and Balancing Audit Forms for Your Use (Continued)

Form ENG 401

PE.	AK PER HR	SEASONAL	E)	(ISTING	NEW		
Building				t	Date		
Location			Latitude		Peak Load, I	R, MO:	
Type Building			Stories		When Built		
 Sq Ft Area			Cubic F	t of Space	e		
X Calculation	for Whole Bu	ilding	For Par	tial Area	********		
Building Load: S	q Ft	 x	Sq Ft/Ton		=		
Outside Design:	DB W	B Avg	OA Temp.	Sum	mer Hours		
Inside Design:	DB(day)	RH		DB(night)	-		
						-	*********
ITEM (Orient.) DIMENSIONS	SQ FT	U or FACTOR*	TEMP DIFF	SENS I BLE BTUH	TONS	LATENT BTUH
ROOF OR CEILING		************	** =======	*******	===============	********	
GLASS		·					
(Solar)							

GLASS							
(Conduction)							
WALLS							
(Conduction)							
PEOPLE, NO.	(NO.)					
OFF. FOUIPMENT	MOTORS (HP)					
COMPUTERS	(KW	 }				• •••••	
K ITCHEN		, 					
	 ns						
VENTIL AIR, SC							
	32 3223333222 NG 10AD			====== R! F	***********	********	*********
	== ===================================		1== ====== Ι ΔTFN	======== T	*********		*********
* U, CLTD, CLF, CLTD = (Temp dif	KW, HP, WD (Daily P	• ange + 14)/2	GRAND		*********	* ********	**********
BTU/YEAR = Sq Ft	x U x Avg Te	mp. Diff. x }	irs =====	=========		4 44444444	*********

COOLING LOAD CALCULATION

Wendes Mechanical Consulting Services Co.

Form ENG 402

PEAK HEATING, COOLING AND CFM PER AREA

NE₩ EXISTING DATE BUILDING _____ AVERAGE CFM PER TON TOTAL SQ FT _____ _____ _____ COOLING LOAD HEATING LOAD CFM SUPPLY SQ FT _____ DIRECT SQ FT BTU CFM EXT. 0F AREA MBH PER CFM CFM TONS AREA PER PER TONS SQ FT SQ FT _____ _____ _____ _____ _____ TOTAL

Wendes Mechanical Consulting Services Co.

Form ENG 403

Job			Date			
ENERG	YC	ONSUM	PTION	HISTO	ORY	
PRIMARY HEAT		Natural Gas Btu per cu. ft.	0	Oil Btu per g	al	
<pre>Propane Btu per gal. Fill in for a complete</pre>	 one vea	Electricity Btu per KW, 3412 r period		Coal Btu per l	b	
Period	Days	FÜEL Cubic Feet Gallons or LBS Consumed	BTU for Period*	Cost		
Total Fo	or Year	-				
· · · · · · · · · · · · · · · · · · ·	E	ECTRIC				
Period	Days	KW's Consumed	BTU for Period*	Cost		
		· · · · · · · · · · · · · · · · · · ·				
Total Fo	r Year					

Multiply energy consumed by BTU per unit. Example: 1000 cu. ft. gas x 1030 BTU/CU FT = 103,000 BTU

Wendes Engineering and Contracting Services

Form AUD 302

Job

_____ Date ____

OUTSIDE WALL ENERGY EVALUATION

List all materials including air space Enter R factor and total.

	Thick-	1	R		1
	Inches	Exist.	New 1	New 2	
Interior Surface		.68	.68	.68	
Surface					
Total R					
$\frac{1}{Rtotal}$ =	ť				

SQUARE FOOT AREA

EXISTING CONDUCTION HEAT LOSS PER YEAR

1	١n	h	

___ Date ___

CEILING AND ROOF ENERGY EVALUATION

List all materials including air space Enter R factor and total.

	Thick-		R		
	Inches	Exist.	New 1	New 2	
Interior Surface		.68	.68	.68	
					A.S.
· · · · · · · · · · · · · · · · · · ·					
Surface					
Total R					The man man
	U				

SQUARE FOOT AREA

EXISTING CONDUCTION HEAT LOSS PER YEAR

Job_ _Job No.____ Date __ SINGLE GLASS R=1DOUBLE GLASS U=1R=2 U = .5Sq. Ft. Sq. Ft. Size Quantity Quantity Size Area Area Total sq. ft. Total sq. ft. OUTSIDE DOORS Single glazed windows can be double glazed or covered with plastic. This Sq. Ft. will cut the heat loss in half. Size Quantity Area If windows are triple glazed change R to 3, U=.33 Hollow core doors R= Insulated or solid doors R= Total sq. ft. EXISTING CONDUCTION HEAT LOSS PER YEAR (Net) Area Sq Ft Avg ` Winter Divide by: Total Heat Loss (Efficiency of Heating (Mill. BTU Per Year Winter Hours \ Equipment Doors: [_____X ____X ____X _]÷ PROPOSED ENERGY IMPROVEMENTS Description New, News New Heat Loss: (Same Formula as Above) _____ X _____ X _____ X _____ _____ X _____ X ____ X ____ Subtract new heat Heat Loss Reduction Per Year loss from existing Fuel Reduction Per Year Divide by BTU's per unit of fuel ,□Cu Ft □Therm □Gallon □KW Cost Savings Per Year. Multiply by \Box cost per unit of fuel χ

WINDOWS AND DOORS

Wendes Engineering and Contracting Services

Full Size Blank Testing and Balancing Audit Forms for Your Use (Continued)

□cost per million BTG

INDOOR AIR QUALITY REPORT

٠b				Date		
ocation				Long	itude	
ENTILATION						
uilding Under Pressure:	Positve	Negative	e 🗆	Neutral		
uilding Pressure Readings, Inc	hes S.P.: Ins	ide	Outside		No. of Occupa	ints:
	Rated	Actual				
	CFM	CFM			_	
Total Building Outside Air			CFM Out	side Air Per	r Person	
Total Building Exhaust Air	<u></u>		Air Chan	ges Per Ho	ur	
Total Building Return Air						
Total Building Supply Air						
Infiltration						
miniation						
Exfiltration	DINGS					
Exfiltration Exfiltration	DINGS					
ARBON DIOXIDE CO2 READ	DINGS					
ARBON DIOXIDE CO2 READ	DINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO REA	ADINGS					
Exfiltration Exfiltration ARBON DIOXIDE CO2 READ ARBON MONOXIDE CO REA ELATIVE HUMIDITY RH REA	ADINGS ADINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO REA RELATIVE HUMIDITY RH REA	ADINGS ADINGS ADINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO REA CELATIVE HUMIDITY RH REA NDOOR CONTAMINANTS	ADINGS ADINGS ADINGS			· · · · · · · · · · · · · · · · · · ·		
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO REA RELATIVE HUMIDITY RH REA NDOOR CONTAMINANTS	ADINGS ADINGS ADINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO REA CELATIVE HUMIDITY RH REA NDOOR CONTAMINANTS	ADINGS ADINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO REA CELATIVE HUMIDITY RH REA NDOOR CONTAMINANTS	ADINGS ADINGS ADINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO REA RELATIVE HUMIDITY RH REA NDOOR CONTAMINANTS	ADINGS ADINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO REA CARBON MONOXIDE CO REA CONTAMINANTS NDOOR CONTAMINANTS	ADINGS ADINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO2 READ CARBON MONOXIDE CO REA CONTAMINANTS NDOOR CONTAMINANTS SUDLOGICAL CONTAMINANTS	ADINGS ADINGS ADINGS					
Exfiltration Exfiltration CARBON DIOXIDE CO2 READ CARBON MONOXIDE CO READ RELATIVE HUMIDITY RH READ NDOOR CONTAMINANTS	ADINGS ADINGS ADINGS					

Indoor Air Quality Forms

PARTICULATES

BUILDING MATERIALS

INADEQUATE VENTILATION

Inadequate Outside Air Improperly Controlled Outside Air Inadequate Exhausts Toilet, Kitchen, Return Air, Fume, etc. Tight Building Short Circuiting of Air in Spaces Improperly Pressurized Building Inadequate Filtering of Air

INDOOR GENERATED CONTAMINANTS

Tobacco Smoke Gas Leaks Freon Leaks Aerosols, Cleaners Hairsprays, Cleaning Sprays, Disinfectants Pesticides Fumes, Chemical Nitrogen Dioxide Products of Combustion, Carbon Monoxide Holes in Heat Exchanger and Flues Clogged Flue or Chimney Engine Exhausts, car, trucks Copy Machines Lasers Habachis and Charcoal Broilers

BUILDING MATERIALS, FABRICS, FURNISHINGS

Carpets Sheets and Blankets Carpet Adhesives Furniture Fabrics in Furniture and Drapes, etc. Wood, Plywood Insulation Paneling, Particle Board Plastics, Laminate Asbestos

INDOOR BIOLOGICAL CONTAMINATION

Standing Water Cooling Coils, Drain Pans Mildew Spores Carbon Dioxide CO2 from People Pollen Mold Fungi Dust Mites House Dust Animal Dander Bacteria and Viruses Humidifiers (not evaporative type)

OUTDOOR CONTAMINANTS

Due to Infiltration Radon Soil Gas Methane Pesticides Auto Pollution Exhaust Stacks Due to Outside Air Intake Drawing in Contaminated Industrial Process

INDUSTRIAL INDOOR CONTAMINANTS

Paint Chemicals Printers Particulates, small solid or liquid particles such as dusts, powders, liquid droplets and mists. Examples: flyash and asbestos dust. Gas Pollutants, fluids without form that occupy space rather than uniformly such as carbon monoxide or chloroform.

Fumes, irritating smoke, vapor or gas.

BUILDING VENTILATION AND PRESSURE REPORT

Job	_ Date
Location	Longitude
Size of Building, Sq Ft	No. of Floors No. of Bldgs
Building Under Pressure:	ral
Pressure Readings: Inside Outside Floor Walls	s: NSEW
Time: 🗆 Winter 🖾 Spring 🗆 Summer 🗆 Fall 🛛	Daytime D Night

			□ Outside A ir □Recirc Air □ Exhaust Air ¹ □Supply Fa				y Fan²	
System Tag	Туре	Location	Maximu	ım CFM	Minimu	m CFM	Rando	m CFM
, wa	System	In Dunung	Rated	Actual	Rated	Actual	Rated	Actual
						••••		

Door, Window, Building Opening Conditions

Stack Effect ____

Wind Effect

Combustion Effect _____

Remarks ____

Indoor Air Quality Forms (Continued)

	PEAK PER HR	SEASONAL	·	EXISTING	NEW		
Building					Date		
Location				L	atitude		
Type Building			Stories		When Built		
Sq Ft Area			Cubic	: Ft of S	pace -		
Calculation	for Whole Buildin	ng Fo	r Partial A	lrea			
Budget Load: Sq F	t	x BTUY	R/Sq Ft		=		
Outside Design:	DB WB	Avg [.] 0	A Temp.	W	inter Hours		• • •
Inside Design: [)B(day)	RH	DB(nig	ght)			
**************************************		\$0 FT		TEMP	BTU: Per Ho Season	our S	SEASONAL
							=======
				•••••			
WALLS							
	 S						
	HEAT LOSS		.== ========		* **********	====	
HEAT GAINS: LITE	s				************		========
PEOPL	E No. People	=					
OFF. EQUIPMEN	 T HP			••••			
COMPUTER	s						*
TOTAL INTERN	AL GAINS						********
NET TOTAL BUILDIN	G HEAT LOSS						*-*
INPUT TO HEA	TING EQUIPMENT,	efficiency			**********		*******
BTUH = Sq Ft ×	U x Temp. Diff.	BTU/YEA	R = Sq Ft x	U x Avg	Temp. Diff.	x Winte	r Hours
Remarks		<u> </u>	<u> </u>	* BTU/:	SQ FT/YEAR		

HEAT LOSS CALCULATION

Wendes Mechanical Consulting Services Co.

Form ENG 401

Engineering Calculation Forms for Your Use

	C00	LING LO	AD CA	LCUL	ATION		
PEA	K PER HR	SEASONAL	EX	ISTING	NEW		
Building					Date		
Location		l	atitude		Peak Load, H	R, MO:	
Type Building		S	tories		When Built		
Sq Ft Area	,,,,		Cubic Fi	t of Spac	e -		
X Calculation	for Whole Bui	lding	For Part	tial Area			
Building Load: Sq	l Ft	x :	- Sq Ft/Ton		=		
Outside Design:	DB WB	 Avg 0/	A Temp.	Sum	mer Hours		
Inside Design: D)B(day)	RH		D8(night)			
ITEM (Orient)		\$0 FT	U or FACTOR*	TEMP DIFF	SENS IBLE BTUH	TONS	LATENT BTUH
			=======		34222233345		========
(Solar)							
GLASS							
(Conduction)							
WALLS							
(Conduction)							
LIGHTING							
PEOPLE, NO.	(NO.)						
OFF. EQUIPMENT	MOTORS (HP)						
COMPUTERS	(KW)						
K ITCHEN							
VENTIL. AIR, Sen	s,						
VENTIL. AIR, Lat	•					********	
TOTAL COOLIN	G LOAD,	***********	SENSI	BLE	*********	88833883	
BTUH = Sq Ft x U	x Temp. Diff.	***********	LATEN				
* U, CLID, CLF, K CLTD = (Temp diff BTU/YEAR = Sq Ft	w, HP, WU) - (Daily Rar x U x Avg Temp	nge + 14)/2 5. Diff. x Hrs	GRAND	TOTAL			

Wendes Mechanical Consulting Services Co.

Form ENG 402

Engineering Calculation Forms for Your Use (Continued)

BUILDING					D	ATE		
	TOTAL S	Q FT		AVERA	GE CF	M PER	 FON	
=======================================	8232823232	COOLING	LOAD	HEATING	LOAD	CFM	SUPPLY	
1954	SQ FT							DIRECT
AKEA	AREA	PER	TONS	PER	мвн	PER	CFM	CFM
		TONS		SQ FT		SUFI		
		34444444						
· · · · · · · · · · · · · · · · · · ·								
		~~~~~~						
						~~		
***************************************		********	********		23322			********
IUIAL					*****	======		

# PEAK HEATING, COOLING AND CFM PER AREA

NEW

EXISTING

Wendes Mechanical Consulting Services Co.

Form ENG 403

Engineering Calculation Forms for Your Use (Continued)

# **HVAC ESTIMATE**

	Date
Job	
Bid Date	
Place	
Estimator	
Architect	Phone
Engineer	Phone

TOTAL

\$

\$

\$

\$

\$

\$

\$

Job	Date
Location	Distance Miles
Total Project Costs \$	Volume of Building Cu Ft
Total Area Sq Ft,	Area ₁ Sq Ft Area ₂ Sq Ft
	BUDGET COSTS

COST/SQ FT BLDG

\$

\$

\$

\$

## JOB DESCRIPTION AND BUDGET COSTS

# \$_____\$

TOTAL

## **DESIGN LOADS**

	Area 1			
	Factor	Total	Factor	Total
Cooling	Sq Ft/Ton	Tons	Sq Ft/Ton	Tons
Cooling	BTU/Sq Ft	BTU	BTU/Sq Ft	BTU
Heating	BTU/Sq Ft	BTU	BTU/Sq Ft	BTU
Supply Air	CFM/Sq Ft	CFM	CFM/Sq Ft	CFM
Duct Weight	LBS/Sq Ft	LBS	LBS/Sq Ft	LBS

Γ

## SYSTEM DESCRIPTION

Heating					
Cooling					
□SZ □MZ □Constant Volume □VAV					
Duct Pressure LP MP HP					
Return Air Method 🛛 Duct 🗆 Ceil. Plenum					
Type Outlets					
Type Perimeter Heat 🛛 Air 🖓 Baseboard					
Temperature Control					

### **KEY PLAN**

COST/TON

\$

\$

\$

\$

\$

\$

\$

No. of	Buildings	Stories

CONSTRUCTION: Glass	_Gross	Area Sq Ft;	U
Exterior Walls	_Gross	AreaSq Ft;	U
Roof	_Gross	AreaSq Ft;	U
Remarks		······································	

Wendes Engineering and Contracting Services

8/80 Form EST 101

HVAC Cost Estimating Forms (Continued)

Total HVAC

Sheet Metal

Equipment

Insulation

Electric

Temperature Control

Piping

SPECIAL LABOR	CORRECTION FACTOR AREAS
Cartage	
Shop Drawings	
Field Sketching	
Testing and Balancing	ALTERNATES
Leak Testing	
Service	· · · · · · · · · · · · · · · · · · ·
Temporary Heat	
	ADDENDUMS
Engineering	
Sleeves	
Removal	CONSTRUCTION SCHEDULE
Property Protection	
Cut Openings and Patch	
SUB CONTRACTORS AND RENTALS	
Insulation	BIDDING PLAN AND SPEC NO.'S
Temperature Control	
Piping	
Electrical	
	NOT INCLUDED
Concrete Pads	
Cranes	
Testing and Balancing	
Excavating and Backfilling	
Cutting and Patching	
END OF BID ITEMS	
□ Sales Tax	
Permits	
Bid Performance	
Travel Pay	
Room and Board	
□ Wage Increases	
Material Price Increases	
Premium Time	
Contingencies	

Wendes Engineering and Contracting Services

BID CHECK O	FF SHEET	
🛛 Total HVAC 🗖 Sheet	Metal OPipi	ng
Job	Due Date	· · · · · · · · · · · · · · · · · · ·
Location	Distance	
Project Costs \$ Size, Sq Ft	Sto	ries
Budget Estimate	Buil	dings
EQUIPMENT	DUCTWORK	D PIPING
	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	<u>.</u>	
		·
		· · · · · · · · · · · · · · · · · · ·
		10150
	SPECIA	ALTIES
	··· · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		
	INSUL	ATION

Wendes Engineering and Contracting Services

7/80 Form EST 102

## QUOTATION CALL LIST AND PRICE COMPARISON

Jop			Due Date	_ Due Date				
Location			Estimator _	_ Estimator				
Architect/Engineer			Date	Date				
ITEM	MANUFACTURER	SUPPLIER	PHONE	QTY	QUOTED PRICE			
			1					
			<u> </u>	+-+				
			-					
				T				
		<u> </u>						
		· · · · · · · · · · · · · · · · · · ·						
		·····						
l								
			+					
		·····		7/00				

Wendes Engineering and Contracting Services

HVAC Cost Estimating Forms (Continued)

7/80 Form EST 104

			QUANTITY	TY TAKEOFF SHEET			Page			
Job				DESCRIPTION						
Drwg Flr	Size	Description	Quantity	Total						
or Sys										
		<u></u>								
										<u> </u>
										<u> </u>
			······································							
•										
		- <u></u>								
					+					
		·····								
<u></u>										
·		<u></u>			+	<u> </u>				
							_			
<u></u>		<u></u>								
	Wendes Engir	neering and Contrac	ting Services		10,	/80 Form E	ST 105	<b>i</b>		

ESTIMATE SUMMARY & EXTENSION SHEET						<u> </u>
Job						
	<u> </u>		1			
	M/	COST		SHOP	FIELD	
	UNIT	TOTAL	UNIT	TOTAL	UNIT	TOTAL
	<b> </b>	 				
	<u> </u>					
· · · · · · · · · · · · · · · · · · ·	$\vdash$					
	1		1	<u> </u>		<b> </b>
				1		
	ļ		ļ			
	ļ		ļ			
· · · · · · · · · · · · · · · · · · ·	<b> </b>					<b> </b>
			<u> </u>			<u> </u>
••••••••••••••••••••••••••••••••••••••			<b></b>			
	<b> </b>	•				<u> </u>
	<u></u>		+			<u> </u>
	<u>†</u>			<u> </u>		<u> </u>
						t
	1		1			
	<b></b>	ļ	<b> </b>	ļ		
	<b> </b>		<b> </b>	ļ		<b> </b>
				ļ	<b> </b>	
			<u> </u>			<u> </u>
		<u> </u>		<u> </u>		ļ
	<u> </u>		+			
• • • • • • • • • • • • • • • • • • •	+		-		<u> </u>	+
		<u> </u>	+			<del> </del>
· · · · · · · · · · · · · · · · · · ·	†			<u> </u>	<u> </u>	+
	<u>† – – – – – – – – – – – – – – – – – – –</u>	<u>†</u>	+	<u> </u>		+
Wendes Engineering and Contracting Services	•		•	8/80	Form ES	ST 106

HVAC Cost Estimating Forms (Continued)

Date _

# **TELEPHONE QUOTATION**

Job		
Supplier	Phone	
	Ву	

v	MECO	DESCRIPTION	ACCESS-	AMOUNT		
QTI	purgr	DESCRIPTION	ORIES	Each	Total	
		Grand Total				

	NOT INCLUDED					
1						

Meets plans and specs 🗌	Taxes included 🗌
Addendums included 🗌	Freight included
Type materials correct 🗌	Lead time required
	Price good for days

Quote Received By: Wendes Engineering and Contracting Services

9/80 Form No. EST 107

Job	Due Date						
Location	ationEstimator						
	HOURS	WAGE RATE	CC	)ST			
Shop Labor			\$				
Field Labor			\$				
Wage Increase Shop			\$				
Wage Increase Field			\$				
Overtime			\$				
Travel Costs			\$				
			\$				
			\$		1		
			TOTAL	LABOR	\$		
Raw Materials			\$				
Equipment			\$				
			\$				
Sales Tax			\$				
	TOTAL	MATERIAL A	AND EQUI	PMENT	\$		
Subcontracts			\$				
			\$	1			
			\$		]		
			\$		1		
			\$				
			\$		1		
		TOTAL	SUBCONT	RACTS	\$		
		TOTAL	DIRECT	COSTS	\$	1	
Overhead On Labor		80	\$		T		
Overhead On Material and Equipment:		%	\$		1		
Overhead On Subcontractors:		%	\$		1		
		T	OTAL OVI	ERHEAD	\$		
( % of Total Direct Costs)	( %	of Sales	)		1		
	TOTAL DIR	ECT AND I	NDIRECT	COSTS	\$		
Profit: % of Total Costs			\$	1	T		
Performance Bond: % of To:	tal Bid		\$		]		
Financing Costs: Amount \$;		К	\$		1		
Total O&P Markup \$, Percen	t of Sale	s %			\$		
		TO	TAL BID	PRICE	\$		
Budget Check:							

# **BID RECAP AND MARKUP SHEET**

Wendes Engineering and Contracting Services

7/80 Form EST 108

## **BIDDING RECORD**

Job	Due Date
Location	Time
BID SUBMITTED TO:	

Company	Name	Phone	Amount	Remarks
· · · · · · · · · · · · · · · · · · ·				
INCLU		EXCLUSI	ONS	
	· · ·			
_				· · · · · · · · · · · · · · · · · · ·

ADDENDUMS

_____

_____

____

Drawings Included

Specifications Included _____

Remarks _____

Wendes Engineering and Contracting Services

1/81 FORM EST 109

ALTERNATES

HVAC Cost Estimating Forms (Continued)

## CALCULATING LABOR COSTS PER HOUR

Location _____ Date _____ Union; Local No, _____ Contract Expiration _____ Non Union _____

## FRINGE BENEFITS PER HOUR

		Journeyman	Foreman	General Foreman	Other
Base Rate		\$	\$	\$	\$
Welfare (Medical)	( %)				
Pension	( %)				
Apprentice Fund	·				
National Training Fund					
Vacation Savings					
Industry Fund					
TOTAL BENEFITS	%	\$	\$	\$	\$
TOTAL WITH BAS	E	\$	\$	\$	\$

### PAYROLL TAXES AND INSURANCE

F.I.C.A.	%		
Workman's Comp.	%		
Federal Unemployment	%		
State Unemployment	%		
Liability Insurance	%		
Property Insurance	%		
Association Due	%		
TOTAL TAXES & INS.	%		
TOTAL BASE, BENEFITS, TAX	ES, INS		

## COST PER POUND BREAKDOWN

	LBS/HR	COST/LB*	LBS/HR	COST/LB*
Material				
Shop Labor				
Field labor				
Shop Drawings				
Cartage				
TOTAL DIRECT COSTS		\$		\$
Indirect Overhead %				
TOTAL COSTS				
Profit %				
TOTAL SELL		\$		\$

*Based on total labor cost above \$

# COMPANY MARKUP CALCULATION SHEET

			Date		
Company		Period			
1. Anticipated	Sales For Year		\$		Percent of Sales
2. Total Indire Administr	ct Overhead and ation Costs for	Year		\$	
Profit Desir	ed%			\$	
Total Antici (Material	pated Direct Co & Labor)	sts for Year		\$	
Br	eakdown: Labor	(Includes fringes, payroll taxes, ins.	) \$		
	Mater	ial and Equipment	\$		
	Subs		\$		
3. SINGLE MARKU	P NEEDED ON TOT	AL DIRECT COSTS		<u></u>	, ·
Percent For Overh	ead Only:	<pre>\$ Overhead Costs \$ Direct Costs</pre>	= \$	=	%
Percent For Overh and Profi	ead t	<pre>\$ Overhead &amp;</pre>	\$\$	=	<u> </u>
4. SIMPLIFIED D	UAL MARKUP FOR	OVERHEAD		Am	ount of Markup
Markup on	Materials and	Equipment% x	\$	<u>=</u> \$	
Markup on	Subs	% x	\$ at & Subs	= \$	
Percent Markup on for Overh	Labor = <u>(\$Tot</u> ead	al Ovhd) - (\$Mat) (Labor Costs)	. & Sub Ovh	<u>d)</u> =	
	\$(	) - (\$	_)_\$	= (	) %
	\$(	)	\$		
5. TOTAL SELLIN	G COST OF LABOR	PER HR WITH DUAL M	ARKUP SYSTE	М	
Wages per	hr (incl. fring	es, ins. and taxes)	\$		
\$Wages x	percent overhea	d markup on labor	\$		
Profit	4 .0	Total	\$	\$	

Wendes Engineering and Contracting Services

1/84 FORM EST 112

Job		Drawi	ng		_System		- 🗆 L	ining —		
Туре	Duct: 🗖 Galv	, □LP □HP, □Other					_ 🗆 I	nsulatio	n	
DUCT	TYPE	EQUIVALENT	тот	1	VEIGHT	0777		SHOP LABOR		FIELD LABOR
SIZE	DUCT	LINEAR FEET PER PIECE	LF	LBS LF	Total	QT1	Hrs /Pc	Total	Hrs /Pc	Tota
	1									
								-		
								( = .		
			1							
						Τ			[	
						Γ			Ī	
						Ī				
		· · · · · · · · · · · · · · · · · · ·				Γ				
<u> </u>			1			1				
						1				
						1		·		
		· · · · · · · · · · · · · · · · · · ·								
									Ι	
				ł		T	1		T	1

## PER PIECE DUCT TAKEOFF SHEET

Job			Dra	wing_		_ Syste	m	ם	Lining_				-	
Туре	Duct	□Galv, □LP □HP, □(	)ther			Duct	Elevat.	🗆	Insulat	ion_			_	
DUCT	SQ. FT		TOTAL	LBS PER	0-12	13-30	31-54	55-84	85 up	T V	V D	F C	F D	
SIZE	PER LINEAR FEET	LINEAR FEET	LINEAR FEET	with WASTE	26ga	24ga	22ga	20ga	18ga					
	L	·	ļ			ļ								ļ
						ļ					$\square$	_		
			ļ								<b>  </b>		_	<b></b>
<u></u>	<u> </u>	<u>, u</u> ,												<u> </u>
	+													<u> </u>
<u></u>						<u> </u>								<u> </u>
<u> </u>	+		<u> </u>								$\vdash$			<u> </u>
													-	-
														<u> </u>
		· · · · · · · · · · · · · · · · · · ·	1.											
						1							-	<u> </u>
					9									
		· · · · · · · · · · · · · · · · · · ·	L											
												$\square$		<u> </u>
						ļ	ļ							<u> </u>
			ļ									$\square$		
	╞──┤						ļ	-			$\square$	$\square$		
												$\rightarrow$	-	<u> </u>
<b></b>							<u> </u>				<u> </u>			
	┝						<u> </u>			$\left  - \right $				
	╁──┥											+		
	+												-+	
		······································					<u> </u>							
	+ 1						<u> </u>						-+	
							<b> </b>						$\neg$	
<u></u>													-+	
•·····														

# PER POUND DUCT TAKEOFF SHEET

Wendes Engineering and Contracting Services

9/80 Form No. EST 122

# PIPING TAKEOFF SHEET

Job	······································	Drawing		System _	Fac	tors		
Type Pi	ipe	Connections			01	nsulati	Lon	
		QUANTITY		MATER	IAL COST	EF	RECTION	LABOR
DIAMETER	ITEM	OR LINEAR FEET	TOTAL	Unit	Total	Equiv. Joints	Unit	Total
								,
·							-	
· ·								
								·
				<b>_</b>				
								- 
			<b>}</b>	<b> </b>				
				<u> </u>	l			
		· · · · · · · · · · · · · · · · · · ·						
			ł	1				
		<u>, , , , , , , , , , , , , , , , , , , </u>		1				
				1				
		· · · · · · · · · · · · · · · · · · ·	1					
						L	ļ	
				<u> </u>				
		· · · · · · · · · · · · · · · · · · ·		ļ	· · · · · · · · · · · · · · · · · · ·	ļ	ļ	
		······	<u> </u>	<u> </u>		<u>L</u>	<u> </u>	ļ
Wendes E	ngineering and Contra	cting Services				Form No.	EST 130	

	PROBLEM WORK SHEET	Hitting H	ome Runs by Wendes
	Date:	Page	of
PROBLEM	(brief statement):		

## **OVERALL PROBLEM**:

General Area or	PROBLEMS (main problems and sub-problems)	PROBLEMS (main problems and sub-problems)		
Category	General Description	Specifics	Options	

Assessment of Problem: Importance: urgency, size, complexity. Type problem. "State" problem is in. Risks of problem.

$\overline{\langle f \rangle}$	CAUSE WORK SHEET	Hitting	Home Runs by	Wendes				
Date:		Page	of					
PROBLEM(brief sta	tement):							
General Description, Symptoms, etc.:								

General	POSSIBLE CAUS	1. Chances of being Cause,	
Category	<b>General Description</b>	Specifics	2. Possible Degree of Effect

Information, Tests, Research Needed: Priorities of testing .:

	<b>OBJECTIVES WORK</b>	SHEET Hitting	Home Runs by Wendes
	Date:	Page	of
PROBLEM:			
OVERALL GOA	L:		
General Cotorowy of	OBJECTIVES		Importance
Category of Consideration	General Description	Specifics	Evaluations
Remarks:	<u></u>		


**PROBLEM**.....(brief statement):

•

### Information and Planning Needed:

General	OPTIONS (Possible solutio	ns)	Effects,					
Area or Category	General Description	Specifics	Risks, Odds, Ratings					
Remarks								
(Form can be used for outline list of all the options, and for evaluating each option separately)								

# information, Research, Tests, Consulting Needed Hitting Home Runs, by Wendes Information, Research, Tests, Consulting Needed Hitting Home Runs, by Wendes Date: Date: Page of

**Remarks**:

**PROBLEM:** 

# Appendix B Charts and Formulas

# **ABBREVIATIONS AND SYMBOLS**

A	Area, Square Feet	LP	Low Pressure System
act	Actual	MP MZ	Medium Pressure System
bhp Btu Btuh	Break Horsepower British Thermal Unit British Thermal Unit per Hour	NPSH Ns	Net Positive Suction Head Specific Speed
cfm Cu	Cubic Feet per Minute Cubic	OA	Outside Air
Cu ft CHW CHWS	Cubic Feet Chilled Water Chilled Water Supply	P Pa	Pressure Atmospheric or Absolute
CHWR	Chilled Water Return	PF	Pressure Power Factor
D db	Difference, Delta Dry Bulb Temperature	Pvp	Vapor Pressure
DIA, dia DP, ΔP Dt, Δt	Diameter Difference in Pressure Difference in Temperature	R R RA	Rankine Temperature Resistance, Ohms Return Air
E eff	Voltage Efficiency	RH rpm	Relative Humidity Revolutions per Minute
F	Fahrenheit	SP	Static Pressure, Inches Water
fpm ft	Feet per Minute Feet	SP gr	Specific Gravity
GPH gpm	Gallons per Hour Gallons per Minute	sq. ft Sz	Square Feet Single Zone System
Н	Head	t	Temperature, degrees Fahrenheit or Celsius
hp	High Pressure System	Т	Absolute Temperature, 460 + Degrees Fahrenheit
Hs HW	Elevation Head Hot Water	TP	Total Pressure, Inches Water
HWS HWR	Hot Water Supply Hot Water Return	V V VP	Velocity, Feet per Minute Volts Velocity Pressure, Inches Water
Ι	Amperes		Gauge
kVa kW	Kilovolt-Amperes Kilowatts	wb wg	Wet Bulb Temperature Water Gauge

# **ASSOCIATION ABBREVIATIONS**

ACCA	Air Condition Contractors Association of America	MCAA	Mechanical Contractors Association of America, Inc.
ADC	Air Diffusion Council	NAPHCC	National Association of Plumbing-Heating-Cooling
ADI	Air Distribution Institute		Contractors
AMCA	Air Moving and Control Association, Inc.	NEMA	National Electrical Manufacturers Association
ARI	Air Conditioning and Refrigeration Institute	NSPE	National Society of Professional Engineers
ASHRAE	American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc.	SMACNA	Sheet metal and Air Conditioning Contractors National Association, Inc.
ASME	American Society of Mechanical Engineers		

# AIR FLOW AND AIR PRESSURE FORMULAS

# AIR FLOW FORMULA

Used to find volume of air flowing through ductwork, outlets, inlets, hoods, etc.

Basic Formula	$cfm = A \times V$	where	e:	
		cfm	=	cubic fpm
		А	=	area in sq. ft
		V	=	velocity in fpm
		$A_k$	=	factor used with
				outlets; actual
				unobstructed air
				flow area

Velocity unknown:

 $V = \frac{CFM}{A}$ 

Area unknown:

$$A = \frac{CFM}{V}$$

# TOTAL PRESSURE FORMULA

Measure of total pressure energy in air at any particular point in an air distribution system.

# AIR FLOW AND AIR PRESSURE FORMULAS (Cont'D.)

TP = VP + SP	where:				
	TP	=	total pressure		
rearranged:			inches W.G.		
	VP	=	velocity pressure,		
VP TP - SP			inches W.B.		
	SP	=	static pressure,		
SP TP - VP			inches W.G.		

# CONVERTING VELOCITY PRESSURE INTO FPM

Standard Air, 075 lb/cu ft

 $fpm = 4005 \times fV-1P$ 

rearranged:

$$VP = \left(\frac{fpm}{4005}\right)^2$$

Non Standard Air

fpm = 1096 × 
$$\sqrt{\frac{\text{VP}}{\text{density}}}$$

where:

VP = velocity pressure, inches W.G. density = lb/cu ft fpm = feet per minute

# **CHANGING FAN CFMs AND DRIVES**

# FAN LAW No. 1

$$RPM new = RPM old \times \left(\frac{CFM new}{CFM old}\right)$$
where:  

$$SP new = SP old \times \left(\frac{CFM new}{CFM old}\right)^{2}$$

$$rpm = revolutions per minute$$

$$cfm = cubic feet per minute$$

$$SP = fan static pressure, inches W.G.$$

$$BHP new = BHP old \times \left(\frac{CFM new}{CFM old}\right)^{3}$$

$$bhp = brake horsepower$$

# **BHP** Formulas

$$\begin{array}{l} \begin{array}{l} BHP \ actual \\ (3 \ phase) \end{array} = \frac{1.73 \times amps \times volts \times eff. \times power \ factor}{746} \\ \\ BHP \ actual \\ (rule \ of \ thumb) \end{array} = \frac{(nameplate)}{horsepower} \times \left(\frac{amps \ act.}{amps \ rated}\right) \times \left(\frac{volts \ act.}{volts \ rated}\right) \\ \\ \end{array}$$

$$\begin{array}{l} where: \\ bhp \ = \ brake \ horsepower \\ eff \ = \ efficiency \end{array}$$

# Sheave/rpm ratios & Belt lengths

 $\begin{array}{l} \operatorname{RPM \ motor} \left( \begin{array}{c} \operatorname{Speed} \\ \operatorname{Ratio} \end{array} \right) = \frac{\operatorname{DIA \ fan \ sheave}}{\operatorname{DIA \ motor \ sheave}} \left( \begin{array}{c} \operatorname{Diameter} \\ \operatorname{Ratio} \end{array} \right) \\ \\ \operatorname{DIA \ fan \ sheave} = \operatorname{DIA \ motor \ sheave} \times \left( \begin{array}{c} \operatorname{RPM \ motor} \\ \operatorname{RPM \ fan} \end{array} \right) \\ \\ \operatorname{DIA \ motor \ sheave} = \operatorname{DIA \ fan \ sheave} \times \left( \begin{array}{c} \operatorname{RPM \ motor} \\ \operatorname{RPM \ fan} \end{array} \right) \\ \\ \operatorname{DIA \ motor \ sheave} = \operatorname{DIA \ fan \ sheave} \times \left( \begin{array}{c} \operatorname{RPM \ motor} \\ \operatorname{RPM \ fan} \end{array} \right) \\ \\ \operatorname{Belt \ Length} = 2c \ + \left[ 1.57 \ \times (D \ + d) \right] \ + \frac{\left( D \pm d \right)^2}{4c} \end{array} \end{array}$ 

where:

C = center to center distance of shaft

D = large sheave diameter

d = small sheave diameter

# AIR HEAT TRANSFER FORMULAS

# **S**ENSIBLE

Btuh = cfm  $\times$  temp change  $\times$  1.08

Rearranged:

 $CFM = \frac{BtuH (Sensible)}{1.08 \times temp change}$ 

Rearranged:

Temp Change =  $\frac{BtuH (Sensible)}{CFM \times 1.08}$ 

# LATENT

 $Btuh = 4840 \times cfm \times WD$ 

# TOTAL LATENT AND SENSIBLE

 $Btuh = 4.5 \times cfm \times HD$ 

where:

Btuh = British thermal units per hour T = Temperature, F cfm = Cubic feet per minute EFF = Efficiency

# AIR HEAT TRANSFER FORMULAS (Cont'D.)

HD = Difference in enthalpy

WD = Difference in humidity ratio (lb water/lb dry air)

# AIR FLOW FOR FURNACES

Gas Furnace

 $CFM = \frac{\text{Heat value of gas (Btu/cu ft) × cu ft/hr × 0.75}}{1.08 × \text{Temp Rise *}}$ 

Oil Furnace

 $CFM = \frac{\text{Heat value of oil (Btu/gal)} \times \text{gal/hr} \times 0.70}{1.08 \times \text{Temp Rise }^*}$ 

Electric Furnace

 $CFM = \frac{Volts \times Amps \times 3.4}{1.08 \times Temp Rise *}$ 

where:

Btuh = British thermal units per hour

RH = relative humidity, percent

T = temperature, IF

cfm = cubic feet per minute

*Difference between supply air and return air temperatures

# **CHANGES IN STATE OF AIR FORMULAS**

For changes of state in volume, temperature and pressure of air and other gases.

New volume of air pressure remains constant and temperature changes

V new = V orig × =  $\left(\frac{T \text{ new}}{T \text{ orig}}\right)$ 

New volume when temperature remains constant and pressure changes

$$V new = V orig \times = \left(\frac{P orig}{P new}\right)$$

New pressure when volume is constant and temperature changes

$$P new = P old \times = \left(\frac{T new}{T old}\right)$$

Derived from gas laws:

$$\left(\frac{PV}{T}\right)_{\text{orig state}} = \left(\frac{PV}{T}\right)_{\text{new state}}$$

where:

V = volume in cu ft

- P = absolute pressure (atmospheric + gauge pressure)
- T = absolute temperature (460 + T)

# AIR DENSITY CORRECTION FACTORS for Different Altitudes and Temperatures

Air	Sea				Attitud	de (ft)					
Temp. °F	Level	1000	2000	3000	4000	5000	6000	-7000	8000	9000	10,000
-40°	1.26	1.22	1.17	1.13	1.09	1.05	1.01	0.97	0.93	0.90	0.87
0°	1.15	1.11	1.07	1.03	0.99	0.95	0.91	0.89	0.85	0.82	0.79
40°	1.06	1.02	0.99	0.95	0.92	0.88	0.85	0.82	0.79	0.76	0.73
70°	1.00	0.96	0.93	0.89	0.86	0.83	0.60	0.77	0.74	0.71	0.69
100°	0.95	.0.92	0.68	0.85	0.81	0.78	0.75	0.73	0.70	0.68	0.65
150°	0.87	0.84	0.81	0.78	0.75	0.72	0.69	0.67	0.65	0.62	0.60
200°	0.80	0.77	0.74	0.71	0.69	0.66	0.64	0.62	0.60	0.57	0.55
250°	0.75	0.72	0.70	0.67	0.64	0.62	0.60	0.58	0.56	0.58	0.51
300°	0.70	0.67	0.65	0.62	0.60	0.58	0.56	0.54	0.52	0.50	0.48
350°	0.65	0.62	0.60	0.58	0.56	0.54	0.52	0.51	0.49	0.47	0.45
400°	0.62	0.60	0.57	0.55	0.53	0.51	0.49	0.48	0.46	0.44	0.42
450°	0.58	0.56	0.54	0.52	0.50	0.48	0.46	0.45	0.43	0.42	0.40
500°	0.55	0.53	0.51	0.49	0.47	0.45	0.44	0.43	0.41	0.39	0.38
550°	0.53	0.51	0.49	0.47	0.45	0.44	0.42	0.41	0.39	0.38	0.36
600°	0.50	0.48	0.46	0.45	0.43	0.41	0.40	0.39	0.37	0.35	0.34
700°	0.46	0.44	0.43	0.41	0.39	0.38	0.37	0.35	0.34	0.33	0.32
800°	0.42	0.40	0.39	0.37	0.36	0.35	0.33	0.32	0.31	0.30	0.29
900°	0.39	0.37	0.36	0.35	0.33	0.32	0.31	0.30	0.29	0.28	0.27
1000°	0.36	0.35	0.33	0.32	0.31	0.30	0.29	0.28	0.27	0.26	0.25

Standard Air <u>Density</u>, <u>Sea Level</u>, 70°F = 0.075 lb/cu <u>ft</u>

# EXAMPLE:

Find actual density of air at sea level if the temperature is 600'F.

Actual Density =  $(0.75 \text{ lb/cu ft}) \times (0.52) = .04 \text{ lb/cu ft}$ 

Find the actual density of 70°F air at 5000 feet altitude.

Actual Density =  $(0.75 \text{ lb/cu ft}) \times (0.83) = .0622 \text{ lb/cu ft}$ 

# CONVERTING VELOCITY PRESSURE INTO FEET PER MINUTE (Standard Air)

Velocity Pressure	fpm	Velocity Pressure	fpm	Velocity Pressure	fpm
.001	127	.21	1835	.61	3127
.005	283	.22	1979	.62	3153
.010	400	.23	1921	.63	3179
.015	491	.24	1962	.64	3204
.020	566	.25	2003	.65	3229
.025	633	.26	2012	.66	3254
.030	694	.27	2081	.67	3279
.035	749	.21	2119	.68	3303
.040	801	.29	2157	.69	3327
.045	849	.30	2193	.70	3351
.050	896	.31	2230	.71	3375
.055	939	.32	2260	.72	3398
.060	981	.33	2301	.73	3422
.065	1020	.34	2335	.74	3445
.070	1060	.35	2369	.75	3468
.075	1097	.36	2403	.76	3491
.080	1133	.37	2436	.77	3514
.085	1167	.38	2469	.78	3537
.090	1201	.39	2501	.79	3560
.095	1234	.40	2533	.80	3582
.100	1266	.41	2563	.81	3604
.105	1298	.42	2595	.82	3625
.110	1328	.43	2626	.83	3657
.115	1358	.44	2656	.84	3669
.120	1387	.45	2687	.85	3690
.125	1416	.46	2716	.86	3709
.130	1444	.47	2746	.87	3729
.135	1471	.48	2775	.88	3758
.140	1498	.49	2804	.89	3779
.145	1525	.50	2832	.90	3800
.150	1551	.51	2860	.91	3821
.155	1577	.52	2888	.92	3842
.160	1602	.53	2916	.93	3863
.165	1627	.54	2943	.94	3894
.170	1651	.55	2970	.95	3904
.175	1675	.56	2997	.96	3924
.180	1699	.57	3024	.97	3945
.185	1723	.58	3050	.98	3965
.190	1746	.59	3076	.99	3985
.195	1768	.60	3102	1.00	4005
.200	1791				

Velocity pressure in inches wg Based on formula: fpm =  $4005\sqrt{VP}$ 

# **CONVERTING VELOCITY PRESSURE INTO FEET PER MINUTE** For Various Temperatures



# HYDRONIC FORMULAS

# Converting PSI to Feet of Head:

## Water Heat Transfer Formulas

Btuh =  $gpm \times (T in - T out) \times 500$ 

 $GPM = \frac{BtuH}{(T \text{ in } \pm T \text{ out}) \times 500}$ 

# Electrical Power Consumption of Water Pump

 $BHP = \frac{GPM \times ft head}{3960} \times eff$ 

# Using System Component as Flow Measuring Device

GPM actual = GPM design ×  $\sqrt{\frac{\Delta P \text{ actual}}{\Delta P \text{ de sign}}}$ 

 $\Delta P \text{ actual} = \Delta P \text{ design} = \left(\frac{\text{GPM actual}}{\text{GPM design}}\right)^2$ 

# COIL OR CHILLER GPM

 $GPM = \frac{Tons \times 24}{T in \pm T out}$ 

Condenser GPM

where:

gpm	=	gallons per minute
$\Delta P$	=	change in pressure across component
Btuh	=	British thermal units per hour
Т	=	temperature, 'F
bhp	=	brake horsepower
kŴ	=	kilowatts

 $GPM = \frac{Tons \times (kW \times .284)}{T out \pm T in}$ 

# PSYCHROMETRIC CHART (Ser Level)



# MOTOR AMP DRAWS, EFFICIENCIES, POWER FACTORS, STARTER SIZES Approximate Values

hp	Full Load Amps			Starter	Size	Percent	Power
	115V	230V	460V	230V	460V	Efficiency	Factors
1/2	4.0	2.0	1.0	00	00	70	69.2
3/4	5.6	2.8	1.4	00	00	72	72.0
1	7.2	3.6	1.8	0	0	79	76.5
1-1/2	10.4	6.8	3.4	0	0	80	80.5
2	13.6	6.8	3.4	0	0	80	85.3
3	19.2	9.6	4.8	0	0	81	82.6
5	30.4	15.2	7.6	0	0	83	84.2
7-1/2		22	11	1	0	85	85.5
10		28	14	1	1	85	88.8
15		42	21	2	1	86	87.0
20		54	27	2	1	87	87.2
25		68	34	2	2	88	86.8
30		80	40	3	2	89	87.2
40		104	52	3	2	89	88.2
50		130	65	4	3	89	89.2
60		154	77	4	3	89	89.5
75		192	96	4	4	90	89.5
100		248	124	5	4	90	90.3
125		293	147			90	90.5
150		348	174			91	90.5
200		452	226			91	
250		568	214			91	
300		678	339			92	

Induction type motors, 1800 rpm, 3-phase, 60-cycle.

### Rule of Thumb on AMP Draws for Motors

- A 115V motor draws double the amps of a 230V motor.
- A 230V motor draws double the amps of a 460V motor.
- Single-phase motors draw double the amps of 3-phase motors.
- At 115 volts, a 3-phase motor draws about 5.2 amps per hp. At 230 volts, a 3-phase motor draws about 2.6 amps per hp.

MULTIPLY Atmospheres (Std.) 760 MM of Mercury	ВҮ	TO OBTAIN	MULTIPLY Feet of water	<b>BY</b> 0.02950 0.8826	<b>TO OBTAIN</b> Atmospheres Inches of mercury	MULTIPLY Liters Liters	<b>BY</b> 0.2642 2 113	TO OBTAIN Gallons Pints (lig.)
at 32°F	14 696	Lbs /sa_inch	Feet of water	0.03048	Kos /sa cm	Liters	1.057	$O_{\text{uarts}}$ (lig.)
Atmospheres	76.0	Cms of mercury	Feet of water	62 43	I bs /sa ft	Meters	100	Centimeters
Atmospheres	29.92	In of mercury	Feet of water	0.4335	Lbs./sq. inch	Meters	3 281	Feet <b>M</b>
Atmospheres	33.90	Feet of water	Feet/min	0.5080	Centimeters/sec	Meters	39 37	Inches $\mathbf{P}$
Atmospheres	1 0333	Kos /sa cm	Feet/min	0.01667	Feet/sec	Meters	1000	Millimeters S
Atmospheres	14 70	Lbs /sq. inch	Feet/min	0.01829	Kilometers hr	Motors	1 094	Varde
Atmospheres	1 058	Tons/sq. ft	Feet/min	0.3048	Motors/min	Ounces (fluid)	1.805	Cubic inches
Brit Therm Units	0.2520	Kilogram-calories	Feet/min	0.01136	Miles/hr	Ounces (fluid)	0.02957	Liters
Brit Therm Units	777 5	Foot-lbs	Foot-pounds	0.01130	Rtu	Ounces/sa inch	0.0225	Lhe /sq inch
Brit Therm Units	0.000393	Horse-power-brs	Callons	3785	C11 contimotors	Ounces/sq. inch	1 73	Inches of water
Brit Therm Units	0.293	Watt-hrs	Callons	0 1337	Cubic feet	Pinte	0.4732	Liter
Btu/min	12.95	Foot-lbs /soc	Callons	231	Cubic inchos	Pounds (avoir)	16	
Btu/min	0.02356	Horse-power	Callons	128	Eluid ouncos	Pounds of water	0.01602	Cubic foot
Btu/min Btu/min	0.02350	Kilowatte	Callons	3 785	Litors	Pounds of water	27.68	Cubic inches
Calorio	0.01757	Watte	Callons water	3.765 8.25	Liters	Pounds of water	0 1109	Callons
Cantimators	0.002068	Rtu	Galiolis water	0.33 12.14	Btu/min	Pounds / sa foot	0.1190	Gallolis East of water
Continuetors	0.003908	Inchas	Horse-power	42.44	Diu/IIIII.	Pounda/sq. toot	0.01002	Peur da /ag inch
Continuetors	0.3937	Theres	Horse-power	55.000	FOOL-IDS./IIIII.	Pounds/sq. toot	0.000943	Atmospheres fast of we
Continuetors	0.03260	reet Motoro	Horse-power	0.7457	FOOL-IDS. / Sec.	Pounds/sq. inch	0.00004	Aunospheres leet of wa-
Centimeters	0.01	Million a tan	Horse-power	0.7457	Kilowatts	Pounds/sq. inch	2.307	ter
Centimitis. of merc.	10	Minimeter.	Horse-power	745.7	VVatts	Pounds/sq. inch	2.036	In. of mercury
Centmtrs. of merc.	0.01316	Atmospheres	Horse-power (boiler)	33.479	Dtu/nr.	Pounds/sq. inch	27.08	Inches of water
Centmtrs. of merc.	0.4461	Feet of water	Horse-power (boiler)	9.803	Kilowatts	Temp. (°C.) + $2/3$	1	Abs. temp. (°C.)
Centmtrs. of merc.	136.0	Kgs./sq. meter	Horse -power-hours	2547	Btu Kil u l	$1 \text{ emp.}(^{\circ}\text{C.}) + 17.78$	1.8	lemp. (°F.)
Centmtrs. of merc.	27 85	Lbs./sq. ft.	Horse-power-hours	0.7457	Kilowatt-hours	1  emp. (°F.) + 460	1	Abs. lemp. (°F.)
Cubic feet	0.1934	Lbs./sq. inch	Inches	2.540	Centimeters	Temp. (°F) –32	5/9	Temp.(°C.)
Cubic feet	2.832×10°	Cubic cms.	Inches	25.4	Millimeters	Therm	100,000	Btu
Cubic feet	1728	Cubic inches	Inches	0.0254	Meters	Tons (long)	2240	Pounds
Cubic feet	0.02832	Cubic meters	Inches	0.0833	Foot	Ton, Refrigeration	12,000	Btu/hr.
Cubic feet	0.03704	Cubic yards		0.03342	Atmospheres	Tons (short)	2000	Pounds
Cubic feet/minute	7.48052	Gallons U.S.	Inches of mercury	1.133	Feet of water	Watts	3.415	Btu
Cubic feet/minute	472.0	Cubic cms./sec.	Inches of mercury	13.57	Inches of water	Watts	0.05692	Btu/min.
Cubic foot water	0.1247	Gallons/sec.	Inches of mercury	70.73	Lbs./sq. ft.	Watts	44.26	Foot-pounds/min.
Feet	62.4	Pounds @ 60°F.	Inches of mercury	0.4912	Lbs./sq. inch	Walls	0.7376	Foot. pounds/sec.
Feet	30.48	Centimeters	Inches of mercury	0.002458	Atmospheres	Walls	0.001341	Horse-power
Feet	12	Inches		0.07355	In. of mercury	Watts	0.001	Kilowatts
Feet	0.3048	Meters	Inches of water	0.5781	Ounces/sq. inch	Watt-hours	3.415	Btu/hr.
	1/3	Yards	Inches of water	5.202	Lbs./sq. loot	Watt-hours	2655	Foot-pounds
			Inches of water	0.03613	Lbs./sq. inch	Watt-hours	0.001341	Horse-power hrs.
			Inches of water	56.92	Btu/min.	Watt-hours	0.001	Kilowatt-hours
			Inches of water	1.341	Horse-power			
				1000	Watts			
			Kilowatts Kilowatts	3415	Btu			

Kilowatts

Kilowatt-hours

HVAC Procedures and Forms Manual

258

# FUEL HEATING VALUES

### Fuel

### Heating Value

### Coal

anthracite 13,900	Btu/lb
bituminous 14,000	Btu/lb
sub-bituminous	Btu/lb
lignite	Btu/lb

### Heavy Fuel Oils and Middle Distillates

kerosene 134,000	Btu/gallon
No. 2 burner fuel oil	Btu/gallon
No. 4 heavy fuel oil 144,000	Btu/gallon
No. 5 heavy fuel oil	Btu/gallon
No. 6 heavy fuel oil, 2.7 76 sulfur 152,000	Btu/gallon
No. 6 heavy fuel oil, 0.3% sulfur	Btu/gallon

### Gas

natural	Btu/cu ft
liquefied butane	Btu/gallon
liquefied propane	Btu/gallon

# **PROPERTIES OF SATURATED STEAM**

vacuum. or Steam Volume (V), V under V under V, pull (var. pull (v		Boiling Point			Maximum			
Mercury         Temperature, Deg. F.         cuff/b.         pal. [For         Plue sizing)           29         76.6         70:00         26.77         1.24         44.7         1088.06         1093.3           20         13.2         145.00         12.04         1.2         101.1         1007.0         1183.1           13         138.2         145.00         12.04         2.4         14.8         1097.0         1183.1           14         181.8         44.3.0         6.570         3.3         149.7         988.9         1183.6           14         181.8         44.3.0         6.570         4.4         15.1         986.6         110.07           14         181.2         2.2         4.527         4.4         5.3         164.9         97.2         1146.1           1         102.2         3.9.16         6.2553         6.4         172.8         974.8         11145.1           2         20.65         22.88         5.345         6.4         172.8         974.8         1145.3           12         21.5         22.07         4.576         8.4         186.6         966.2         1113.3           2         21.6         2.3.7	vacuum. Inches of	or Steam	Specific Volume (V),	$\sqrt{\mathbf{V}}$	Allowable Pres- sure Drop,	Heat of the Liquid.	Latent Heat of Evap.,	Total Heat of Steam,
Deg. Tc         valve sizing)           29         7.6.         706.00         26.57         0.28         44.7         1088.06         1083.8           26         133.2         145.00         11.04         1.2         10.1         101.70         1188.1           23         143.8         24.30         0.74.2         2.3         143.8         999.6         1183.4           12         157.2         44.37         6.576         4.44         155.1         985.6         1142.7           10         192.2         30.16         6.237         4.4         161.1         982.6         1142.7           4         204.5         205.5         25.55         5.335         6.9         176.5         972.5         1147.6           2         205.5         25.55         5.335         6.9         176.5         972.5         1183.4           3         213.5         25.75         5.17.3         7.4         180.0         970.4         1153.4           3         213.5         25.75         5.17.3         7.4         180.6         946.2         11153.4           3         213.5         25.75         5.17.3         7.4         180.6	Mercury	Temperature,	cu.ft/lb.		pal.(For	Btu	Btu	Btu
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Deg. °F.			valve sizing)			
26         1332         145.00         12.04         12         10.1         107.0         118.1           20         141         173.0         31.0         71.00         33         146.5         990.0         110.1           11         173.5         41.27         64.00         33         146.5         990.0         110.1           10         192.2         33.16         6.277         4.9         160.1         982.6         1142.7           4         201.6         32.90         6.744         5.30         16.9         172.5         97.2         1146.1           4         201.6         32.90         6.744         5.30         16.9         172.5         97.5         1160.0           1         215.3         25.37         5.075         7.4         180.0         97.2         1160.4           1         215.3         25.37         5.075         7.8         183.3         96.2         1152.8           3         221.5         22.37         4.570         8.8         189.6         96.3         1152.8           3         221.5         22.37         4.570         8.8         189.6         99.63         1153.9 <t< td=""><td>29</td><td>76.6</td><td>706.00</td><td>26.57</td><td>0.28</td><td>44.7</td><td>1048.06</td><td>1093.8</td></t<>	29	76.6	706.00	26.57	0.28	44.7	1048.06	1093.8
20         1612         75.20         8.672         2.4         1291         100.0         1180.1           15         178.9         51.00         7.162         3.7         14.64         98.9         1187.4           14         181.9         45.30         6.507         4.4         160.7         98.9         118.6           8         196.7         35.81         5.984         5.4         164.7         98.00         114.27           4         204.8         30.62         5.333         6.4         172.8         974.8         118.0           2         28.5         28.8         5.345         6.4         172.8         974.8         118.0           1         215.3         25.37         5.175         7.4         180.0         970.4         118.1           1         215.3         25.37         5.175         7.4         180.0         970.4         118.1           1         215.3         25.37         5.175         7.4         180.0         970.4         118.1           1         215.3         25.37         5.175         7.4         180.3         96.2         115.3           1         215.3         25.37	26	133.2	145.00	12.04	1.2	101.1	1017.0	1118.1
15       178.9       51.30       7.162       3.7       146.8       990.6       117.4         14       181.8       43.30       6.570       4.4       151.1       985.6       1180.7         12       187.2       43.27       6.577       4.4       151.1       985.6       1180.7         6       201.0       32.99       6.744       5.9       166.9       977.2       1146.1         2       208.5       28.85       5.345       6.9       176.5       972.5       1140.0         2       208.5       28.58       5.345       6.9       176.5       972.5       1140.0         2       208.5       22.52       5.175       7.4       180.0       970.4       1150.4         2       218.5       23.78       4.876       8.4       186.6       966.2       1152.8         3       21.15       21.37       4.760       8.4       186.6       966.2       1153.9         4       21.4       21.4       4.68       9.4       192.5       96.3       1153.9         5       22.14       21.4       4.68       9.4       192.5       1153.9         6       22.4       1	20	161.2	75.20	8.672	2.4	129.1	1001.0	1180.1
14       181.8       43.0       6.950       3.9       149.7       98.86       118.6         10       192.2       39.16       6.254       4.9       160.11       98.56       114.7         1       191.2       39.16       6.254       4.9       160.11       98.56       114.7         1       20.15       22.95       23.55       5.33       6.4       172.8       97.4       114.6         2       20.55       23.55       5.35       6.9       175.5       97.25       114.6         1       215.3       25.30       5.020       7.4       180.0       970.4       1151.4         1       215.3       25.30       5.020       7.8       183.6       966.2       1153.9         1       215.4       22.74       4736       8.4       139.5       966.3       1159.9         1       215.4       21.74       4476       8.4       139.5       966.3       1159.9         1       221.5       22.74       4736       8.4       139.5       966.3       1159.9         1       21.15       22.4       14.4       10.4       195.3       196.3       1159.9         1	15	178.9	51.30	7.162	3.7	146.8	990.6	1137.4
12         187.2         4.3.2         6.576         4.4         151.1         98.66         114.7           10         192.2         30.16         6.237         4.9         160.1         982.6         114.7           6         20.87         30.81         5.944         5.4         164.7         982.6         114.7           2         20.85         20.82         5.345         6.9         176.5         972.5         1149.0           Cage Pressure, Pali         212.0         26.79         5.175         7.4         180.0         970.4         1193.4           2         218.5         25.20         5.175         7.4         180.0         970.4         1194.4           2         218.5         25.20         5.175         7.4         180.0         970.4         1194.4           1         213.3         26.57         4.700         8.8         185.6         964.2         1152.8           3         215.5         22.57         4.700         8.8         185.6         964.3         1153.9           4         22.44         21.40         4.62.8         9.4         192.5         962.3         1157.5           7         222.3<	14	181.8	48.30	6.950	3.9	149.7	988.9	1138.6
10         192.2         39.16         6.237         4.9         160.1         182.6         114.7           8         196.7         33.81         5984         5.4         164.7         980.0         114.47           6         201.0         33.99         6.744         5.9         168.9         977.2         114.61           4         201.8         20.85         25.39         5.303         6.9         176.5         972.5         114.01           7         20.85         25.39         5.105         7.4         180.0         970.4         113.15           1         215.3         22.97         5.175         7.4         180.0         970.4         113.15           3         221.5         22.37         4.770         8.8         189.6         96.3         113.59           5         227.1         20.41         4.518         9.8         195.3         96.6         1155.9           6         228.8         19.45         4.410         10.4         198.0         95.8         1156.5           7         222.3         18.64         4.317         10.8         200.5         972.5         1102.2           10         23	12	187.2	43.27	6.576	4.4	155.1	985.6	1140.7
8         196.7         35.81         5.984         5.4         16.7         98.00         114.47           4         204.8         30.62         5.333         6.4         172.8         974.8         1147.6           Cage Pressure, Protein         -         -         125.5         5.343         6.4         172.8         974.8         1147.6           0         212.0         26.79         5.175         7.4         180.0         970.4         1150.4           1         215.5         23.78         4.876.8         84.8         186.6         966.2         1152.8           3         221.4         22.77         4.770         8.8         186.6         966.2         1152.8           3         221.4         23.78         4.470         8.8         186.0         964.3         1153.9           4         224.4         21.77         4.470         10.4         198.0         985.8         1155.9           6         229.8         19.45         4.410         10.4         198.0         985.5         1155.7           7         23.2         18.64         4.317         11.8         20.05         972.2         1157.7           8 </td <td>10</td> <td>192.2</td> <td>39.16</td> <td>6.257</td> <td>4.9</td> <td>160.1</td> <td>982.6</td> <td>1142.7</td>	10	192.2	39.16	6.257	4.9	160.1	982.6	1142.7
6         2010         32.99         67.44         59         168.9         97.2         114.3           2         208.5         28.88         5.345         6.9         17.5         972.5         1149.0           Cage Pressure, Fail         2         208.5         28.88         5.345         6.9         17.5         972.5         1149.0           0         212.0         26.79         5.175         7.4         180.0         970.4         1151.5           2         215.5         22.79         4.70         8.8         189.6         966.2         1152.9           4         224.4         21.40         4.626         9.4         192.5         96.2.3         1153.9           6         223.3         19.44         4.107         10.4         198.0         97.2         1154.9           7         234.3         19.44         4.107         10.4         198.0         97.5         1155.9           7         234.3         19.44         4.107         10.4         198.1         1163.5           7         234.3         19.44         4.102         11.4         205.4         951.1         1160.2           10         239.9	8	196.7	35.81	5.984	5.4	164.7	980.0	1144.7
4         2043         30.62         5.333         6.4         17.85         97.45         1147.6           Cage Pressure, Pail         2         22.0         26.79         5.175         7.4         180.0         970.4         1150.4           1         215.3         25.29         5.175         7.4         180.0         970.4         1150.4           3         221.5         23.79         4.876         8.4         186.6         966.2         1152.8           3         221.5         23.77         4.750         8.8         189.6         966.3         1153.9           4         224.4         21.40         4.40.6         9.4         192.5         962.3         1154.9           5         221.3         20.44         4.310         10.18         20.80         975.5         1157.7           8         244.8         17.85         4.225         11.4         20.80         975.5         1158.9           10         239.4         16.49         3.067         12.4         20.77         952.5         1161.0           21         24.45         13.44         12.4         20.77         952.5         1161.0           22         24.	6	201.0	32.99	6.744	5.9	168.9	977.2	1146.1
2         208.5         28.58         5.345         6.9         176.5         97.25         1149.0           Gage Pressure, Pali         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	4	204.8	30.62	5.533	6.4	172.8	974.8	1147.6
Correstore, Pati         Solution	2	208.5	28.58	5.345	6.9	176.5	972.5	1149.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gage Pressure, Pali							
1       215.3       25.20       5.020       7.8       183.3       968.2       1151.5         3       221.5       22.57       4.750       8.8       189.6       964.3       1153.9         4       224.4       21.40       4.626       9.4       192.5       962.3       1154.9         5       227.1       20.41       4.518       9.8       195.3       960.6       1155.9         6       229.8       19.45       4.410       10.4       198.0       988.8       1155.8         7       22.3       18.64       4.317       10.8       20.5       977.2       1157.7         8       24.4.8       17.85       4.225       11.4       20.80       955.5       1158.5         9       27.71       17.16       4.142       11.8       20.44.0       94.0       119.4         10       29.94       16.49       4.061       12.4       20.7       95.5       1160.2         11       24.16       15.59       3.947       12.8       20.99       91.1       1161.8         15       2.948       13.07       3.724       14.8       214.2       94.83       1162.5         2.0 <td>0</td> <td>212.0</td> <td>26.79</td> <td>5.175</td> <td>7.4</td> <td>180.0</td> <td>970.4</td> <td>1150.4</td>	0	212.0	26.79	5.175	7.4	180.0	970.4	1150.4
2       218.5       23.78       4.876       8.4       186.6       96.2       1152.8         3       221.5       22.77       4.4750       8.8       1896.6       96.2.3       115.9         4       224.4       21.40       4.626       9.4       192.5       96.2.3       115.9         5       227.1       20.41       4.518       9.8       195.3       960.5       157.7         8       223.2       18.44       4.317       10.8       20.0.5       957.5       115.7         8       234.8       17.85       4.225       11.4       205.4       954.0       1159.4         10       239.4       16.49       4.061       12.4       207.7       952.5       1160.2         21       243.6       15.35       3.918       13.4       212.1       949.7       1161.8         22       243.7       15.35       3.918       13.4       214.2       948.3       116.0         23.0       2.66.8       10.57       3.250       19.8       235.6       93.4       116.9         20       2.66.8       10.57       3.250       19.8       235.6       93.4       116.9         30	1	215.3	25.20	5.020	7.8	183.3	968.2	1151.5
3221.522.574.7508.81896964.31153.94224421.404.6269.4192.5962.31154.915227.120.414.5189.8195.3960.61155.96229.819.444.10110.4198.0988.81156.87223.318.644.31710.8200.5957.21157.78244.817.764.14211.8206.4955.51185.49237.117.164.14211.8205.4994.01159.410239.416.393.98712.8209.9951.11161.021243.713.353.91813.4212.1992.71161.815249.813.873.72414.8214.2948.31162.525266.810.573.25019.8235.6934.01169.630274.07.6682.75727.4259.9919.9177.840286.77.6822.75747.4276.194.0118.470316.03.337182637.4276.194.0118.690312.24.2692.15947.4276.194.0118.610350.03.337182667.433.186.1118.6110350.03.337182667.433.186.11186.2120350.03.3371826 <td>2</td> <td>218.5</td> <td>23.78</td> <td>4.876</td> <td>8.4</td> <td>186.6</td> <td>966.2</td> <td>1152.8</td>	2	218.5	23.78	4.876	8.4	186.6	966.2	1152.8
4       2244       21.40       4.626       9.4       192.5       96.2.3       1154.9         5       227.1       20.44       4.518       9.8       195.3       960.5       1155.9         6       229.8       19.45       4.410       10.4       198.0       98.8       1157.7         7       232.3       18.64       4.317       10.8       200.5       957.5       1157.7         8       234.8       17.85       4.225       11.4       208.0       955.5       1159.4         10       239.4       16.49       4.061       12.4       207.7       952.5       1160.2         21       21.41.6       15.00       3.987       12.8       208.9       99.9       11.61.10         22       243.7       15.35       3.918       13.4       21.2       94.9       116.16.2         20       268.8       10.57       3.250       19.8       214.2       248.0       28.9       117.9         30       274.0       9.463       3.076       22.4       245.0       28.9       117.9         40       266.7       7.826       2.797       27.4       24.50       29.9       177.5	3	221.5	22.57	4.750	8.8	189.6	964.3	1153.9
5       227.1       20.41       4.518       9.8       195.3       960.6       1155.9         6       222.8       19.44       10.10       10.4       198.0       95.8       1156.8         7       232.3       18.64       4.317       10.8       200.5       977.2       1157.7         8       284.8       17.85       4.225       11.4       208.0       95.5       1189.5         9       237.1       17.16       4.142       11.8       205.4       95.1       1160.2         10       239.4       16.49       4.061       12.4       207.7       95.5       1160.2         11       241.6       15.90       3.987       12.8       209.9       951.1       1161.0         22       243.7       15.35       3.918       13.4       212.1       94.9       1162.5         20       266.8       10.57       3.250       19.8       235.6       93.40       1166.9         217.4       94.63       3.076       22.4       235.0       94.9       1179.9         40       286.7       7.82.6       2.797       27.4       255.9       919.9       177.8         50       297	4	224.4	21.40	4.626	9.4	192.5	962.3	1154.9
6         228.8         19.45         4.410         10.4         198.0         958.8         1156.8           7         232.3         18.64         4.317         10.8         200.5         972.1         1157.7           8         234.8         17.85         4.25         11.4         208.0         955.5         1158.5           9         237.1         17.16         4.142         11.8         205.4         95.5         1160.2           10         239.4         16.49         4.061         12.4         207.7         952.5         1160.2           11         241.6         15.90         3.987         12.8         209.9         951.1         1161.0           22         245.7         15.35         3.918         13.4         212.1         949.7         1168.9           25         266.8         10.57         3.250         19.8         235.6         93.0         1169.6           30         274.0         9.463         3.076         22.4         233.0         928.9         117.9           40         286.7         7.826         2.797         2.4         265.1         138.1           10         307.3         5.336	5	227.1	20.41	4.518	9.8	195.3	960.6	1155.9
7       222.3       18.64       4.317       10.8       200.5       957.2       1157.7         8       284.8       17.85       4.225       11.4       200.6       955.5       1158.5         9       237.1       17.16       4.142       11.8       205.4       954.0       1159.4         10       239.4       16.49       4.061       12.4       207.7       952.5       1160.2         11       241.6       15.90       3.987       12.8       209.9       951.1       1161.8         15       249.8       13.87       3.724       14.8       214.2       948.3       1162.5         20       268.8       10.07       3.250       19.8       235.6       934.0       1169.6         30       274.0       9.46.3       3.076       22.4       243.0       928.9       117.9         40       266.7       7.826       2.797       27.4       25.9       919.9       177.9         50       297.7       6.682       2.585       32.4       267.1       911.9       1179.0         60       307.3       5.836       2.415       37.4       27.1       90.4       118.4 <td< td=""><td>6</td><td>229.8</td><td>19.45</td><td>4.410</td><td>10.4</td><td>198.0</td><td>958.8</td><td>1156.8</td></td<>	6	229.8	19.45	4.410	10.4	198.0	958.8	1156.8
8       284.8       17.85       4.225       11.4       208.0       95.5       1158.5         9       237.1       17.16       4.142       11.8       205.4       954.0       1159.4         10       239.4       16.49       4.061       12.4       207.7       952.5       1160.2         21       241.6       15.50       3.987       12.8       209.9       951.1       1161.0         22       243.7       15.35       3.918       13.4       212.1       949.7       1163.8         20       266.8       10.57       3.250       19.8       235.6       934.0       1169.6         30       274.0       9.463       3.076       22.4       243.0       928.9       117.9         40       286.7       7.826       2.797       27.4       255       919.9       177.8         50       297.7       6.682       2.585       324       26.1       898.0       1181.8         70       316.0       5.182       2.276       42.4       294.3       891.9       1184.1         80       323.9       4.662       2.159       47.4       294.3       891.9       1184.1	7	232.3	18.64	4.317	10.8	200.5	957.2	1157.7
9         237.1         17.16         4.142         11.8         205.4         954.0         1159.4           10         239.4         16.49         4.061         12.4         207.7         952.5         1160.2           11         241.6         15.90         3.987         12.8         209.9         951.1         1161.0           15         249.8         13.87         3.724         14.8         214.2         948.3         1162.5           10         268.8         10.07         3.250         19.8         235.6         934.0         1169.6           30         274.0         9.463         3.076         22.4         243.0         928.9         117.9           50         207.7         6.682         2.385         3.24         267.1         911.9         117.9           60         307.3         5.836         2.415         3.74         27.7         948.0         1184.1           70         316.0         5.182         2.276         42.4         286.1         880.0         1184.2           90         331.2         4.289         2.059         52.4         301.9         886.1         1185.6           120         350.0<	8	284.8	17.85	4.225	11.4	208.0	955.5	1158.5
10239416.494.06112.4207.7952.51160.111241.615.903.98712.8209.9951.11161.022245.715.353.91813.4212.1949.71161.815249.813.873.72414.8214.2948.3116.920266.810.573.25019.823.5693.401169.630274.09.4633.07622.423.5694.01169.630274.09.4633.07622.424.30928.91171.940286.77.8262.79727.425.991.9177.850297.76.6822.85532.4267.191.91178.1870316.05.1822.27642.4286.1898.01184.180323.94.6622.15947.4294.3891.91186.29033.124.2892.0595.2430.9886.11188.0100837.93.8881.97257.430.9886.11189.6120350.03.3371.82667.4321.787.071196.4140360.92.9281.71077.4333.0845.01198.0250406.01.7421.320132.4381.5820.2120.73504561.2721.13157.4386.680.46120.2250406.01.7	9	237.1	17.16	4.142	11.8	205.4	954.0	1159.4
11241.615.90 $3.987$ $12.8$ $20.9$ $951.1$ $1161.8$ 22245.715.35 $3.918$ $13.4$ $212.1$ $949.7$ $1163.8$ 15249.8 $13.87$ $3.724$ $14.8$ $214.2$ $948.3$ $1162.5$ 20266.8 $10.57$ $3.250$ $19.8$ $225.6$ $934.0$ $1169.6$ 30 $274.0$ $946.3$ $3076$ $224$ $243.0$ $928.9$ $117.9$ 40 $286.7$ $7.826$ $2.797$ $27.4$ $255.9$ $919.9$ $177.88.7$ 50 $297.7$ $6.682$ $2.585$ $324$ $267.1$ $914.7$ $1181.8$ 70 $316.0$ $5.182$ $2.276$ $42.4$ $286.1$ $898.0$ $1184.1$ 80 $323.9$ $4.662$ $2.159$ $47.4$ $294.3$ $891.9$ $1184.2$ 90 $331.2$ $4.289$ $2.059$ $52.4$ $301.9$ $886.1$ $1188.0$ 120 $350.0$ $3.337$ $1.826$ $67.4$ $321.7$ $87.0$ $1192.4$ 140 $360.9$ $2.928$ $1.710$ $77.4$ $33.3$ $851.5$ $1194.6$ 150 $379.6$ $2.435$ $1.531$ $97.4$ $353.0$ $851.5$ $1198.6$ 120 $350.0$ $3.337$ $1.826$ $67.4$ $321.7$ $87.5$ $1198.4$ 140 $360.9$ $2.928$ $1.710$ $7.4$ $33.1$ $861.5$ $1194.6$ 160 $370.6$ $2.042$ $1.613$ $87.$	10	239.4	16.49	4.061	12.4	207.7	952.5	1160.2
22 $243.7$ $15.5$ $3918$ $13.4$ $21.1$ $99.7$ $1161.8$ $15$ $249.8$ $13.87$ $3.724$ $14.8$ $214.2$ $94.3$ $1162.5$ $20$ $268.8$ $12.00$ $3.464$ $17.4$ $227.4$ $939.5$ $1166.9$ $30$ $274.0$ $9.463$ $3.076$ $22.4$ $243.0$ $928.9$ $1171.9$ $40$ $2867$ $7.826$ $2.797$ $27.4$ $255.9$ $919.9$ $1775.8$ $50$ $297.7$ $6.682$ $2.385$ $32.4$ $267.1$ $911.9$ $1179.0$ $60$ $307.3$ $5.836$ $2.415$ $37.4$ $277.1$ $904.7$ $1181.8$ $80$ $323.9$ $4.662$ $2.159$ $47.4$ $294.3$ $891.9$ $1186.2$ $100$ $837.9$ $3.888$ $1.972$ $57.4$ $308.9$ $886.1$ $1188.0$ $100$ $837.9$ $3.888$ $1.972$ $57.4$ $308.9$ $886.1$ $1189.6$ $120$ $30.0$ $3.337$ $1.826$ $67.4$ $321.7$ $870.7$ $1192.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $120$ $370.6$ $2.602$ $1.613$ $87.4$ $343.4$ $853.0$ $1196.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $140$ $370.$	11	241.6	15.90	3.987	12.8	209.9	951.1	1161.0
15249.813.87 $3.74$ 14.8 $214.2$ $948.3$ $1162.5$ 20268.8 $10.57$ $3.260$ $19.8$ $235.6$ $934.0$ $1169.6$ 25266.8 $10.57$ $3.250$ $19.8$ $235.6$ $934.0$ $1169.6$ 40286.7 $7.826$ $2.797$ $27.4$ $255.9$ $919.9$ $1775.8$ 50 $297.7$ $6.682$ $2.585$ $32.4$ $267.1$ $911.9$ $1179.0$ 60 $307.3$ $5.836$ $2.415$ $37.4$ $277.1$ $904.7$ $1181.8$ 70 $316.0$ $5.182$ $2.276$ $42.4$ $286.1$ $898.0$ $1184.1$ 80 $323.9$ $4.662$ $2.159$ $47.4$ $294.3$ $891.9$ $1186.2$ 90 $331.2$ $4.289$ $2.059$ $52.4$ $301.9$ $86.1$ $1188.0$ 100 $837.9$ $3.888$ $1.972$ $57.4$ $308.9$ $80.7$ $1192.4$ 140 $360.9$ $2.228$ $1.710$ $77.4$ $333.1$ $81.5$ $1194.6$ 150 $370.6$ $2.402$ $1.613$ $87.4$ $343.4$ $853.0$ $1199.4$ $250$ $406.0$ $1.742$ $1.320$ $132.4$ $381.5$ $820.2$ $1201.7$ $300$ $421.8$ $1.472$ $1.128$ $182.4$ $414.1$ $790.1$ $1204.2$ $450$ $455.6$ $0.794$ $0.865$ $307.4$ $428.0$ $76.6$ $1204.2$ $450$ $459.5$ $0.998$ $0.99$	22	243.7	15.35	3.918	13.4	212.1	949.7	1161.8
20 $268.8$ $12.00$ $3.464$ $1.4$ $22.4$ $99.5$ $1169.6$ $30$ $274.0$ $94.63$ $3.076$ $22.4$ $243.0$ $928.9$ $1171.9$ $40$ $286.7$ $7.826$ $2.797$ $27.4$ $255.9$ $919.9$ $1775.8$ $50$ $297.7$ $6.682$ $2.855$ $32.4$ $267.1$ $911.9$ $1179.0$ $60$ $307.3$ $5.836$ $2.415$ $37.4$ $277.1$ $904.7$ $1181.8$ $70$ $316.0$ $5.182$ $2.276$ $42.4$ $286.1$ $898.0$ $1184.1$ $80$ $323.9$ $4.662$ $2.159$ $47.4$ $294.3$ $891.9$ $1186.2$ $90$ $331.2$ $4.289$ $2.059$ $52.4$ $30.9$ $886.1$ $1188.0$ $100$ $837.9$ $3.888$ $1.972$ $57.4$ $308.9$ $880.7$ $1189.6$ $120$ $350.0$ $3.337$ $1.826$ $67.4$ $321.7$ $870.7$ $1192.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $160$ $370.6$ $2.345$ $1.531$ $97.4$ $353.0$ $845.0$ $1196.4$ $200$ $387.8$ $2.134$ $1.461$ $107.4$ $361.8$ $837.6$ $1199.3$ $250$ $406.0$ $1.742$ $1.232$ $123.4$ $481.5$ $820.2$ $1201.7$ $350$ $435.6$ $1.272$ $1.128$ $182.4$ $414.1$ $70.0$ $1204.2$ $400$	15	249.8	13.87	3.724	14.8	214.2	948.3	1162.5
25 $206.6$ $10.37$ $3.250$ $19.6$ $253.6$ $994.0$ $1109.6$ $30$ $274.0$ $9463$ $3.076$ $22.4$ $243.0$ $928.9$ $1171.9$ $40$ $286.7$ $7.826$ $2.797$ $27.4$ $255.9$ $919.9$ $1775.8$ $50$ $297.7$ $6.682$ $2.285$ $32.4$ $267.1$ $911.9$ $1179.0$ $60$ $307.3$ $5.836$ $2.415$ $37.4$ $277.1$ $904.7$ $1184.1$ $80$ $323.9$ $4.662$ $2.159$ $47.4$ $294.3$ $891.9$ $1184.1$ $90$ $311.2$ $4.289$ $2.059$ $52.4$ $301.9$ $886.1$ $1188.0$ $100$ $837.9$ $3.888$ $1.972$ $57.4$ $308.9$ $880.7$ $1189.6$ $120$ $350.0$ $3.337$ $1.826$ $67.4$ $321.7$ $870.7$ $1192.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $180$ $379.6$ $2.402$ $1.613$ $87.4$ $434.3$ $853.0$ $1196.4$ $250$ $406.0$ $1.742$ $1.200$ $132.4$ $381.5$ $800.2$ $120.7$ $300$ $421.8$ $1.472$ $1.213$ $157.4$ $398.6$ $804.6$ $1203.2$ $450$ $475.6$ $1.272$ $1.128$ $182.4$ $414.1$ $79.7$ $1204.6$ $450$ $459.5$ $0.999$ $232.4$ $440.9$ $77.6$ $1204.6$ $450$ $479.7$ <	20	268.8	12.00	3.464	17.4	227.4	939.5	1166.9
30 $2/40$ $9,453$ $30,6b$ $22.4$ $243.0$ $925.9$ $117,58$ $40$ $286.7$ $7.826$ $2.797$ $27.4$ $255.9$ $91.9$ $177.58$ $50$ $297.7$ $6.682$ $2.585$ $32.4$ $267.1$ $91.9$ $1179.0$ $60$ $307.3$ $5.886$ $2.415$ $37.4$ $27.1$ $904.7$ $118.8$ $70$ $316.0$ $5.182$ $2.276$ $42.4$ $286.1$ $89.0$ $1184.1$ $80$ $323.9$ $4.662$ $2.159$ $47.4$ $294.3$ $891.9$ $1186.2$ $90$ $331.2$ $4.289$ $2.059$ $52.4$ $301.9$ $86.1$ $1188.0$ $100$ $837.9$ $3.888$ $1.972$ $57.4$ $308.9$ $80.7$ $1199.6$ $120$ $350.0$ $3.337$ $1.826$ $67.4$ $321.7$ $870.7$ $1192.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1199.6$ $160$ $370.6$ $2.602$ $1.613$ $87.4$ $333.4$ $853.0$ $1196.4$ $200$ $387.8$ $2.134$ $1.461$ $107.4$ $361.8$ $837.6$ $1199.3$ $250$ $406.0$ $1.742$ $1.202$ $132.4$ $361.8$ $837.6$ $1199.3$ $250$ $495.6$ $1.272$ $1.128$ $182.4$ $414.1$ $790.1$ $1204.2$ $450$ $459.5$ $0.998$ $0.999$ $232.4$ $440.9$ $763.7$ $1204.6$ $450$	25	200.8	10.57	3.250	19.8	235.6	934.0	1109.0
40 $2007$ $7.6682$ $2.585$ $32.4$ $20.74$ $20.93$ $91.93$ $173.8$ $60$ $307.3$ $5.836$ $2.415$ $37.4$ $277.1$ $904.7$ $1181.8$ $60$ $307.3$ $5.836$ $2.415$ $37.4$ $277.1$ $904.7$ $1184.1$ $80$ $323.9$ $4.662$ $2.159$ $47.4$ $294.3$ $891.9$ $1186.2$ $90$ $331.2$ $4.289$ $2.059$ $52.4$ $301.9$ $886.1$ $1188.0$ $120$ $350.0$ $3.337$ $1.826$ $67.4$ $321.7$ $870.7$ $1192.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $160$ $370.6$ $2.602$ $1.613$ $87.4$ $343.4$ $853.0$ $1196.4$ $180$ $379.6$ $2.345$ $1.531$ $97.4$ $353.0$ $845.0$ $1198.0$ $200$ $387.8$ $2.134$ $1.461$ $107.4$ $361.8$ $87.6$ $1199.3$ $200$ $387.6$ $1.742$ $1.320$ $132.4$ $381.5$ $820.2$ $1201.7$ $300$ $421.8$ $1.272$ $1.128$ $182.4$ $414.1$ $790.1$ $1204.2$ $400$ $448.1$ $1.120$ $1.068$ $207.4$ $428.0$ $77.66$ $1204.6$ $500$ $470.0$ $0.900$ $0.948$ $257.4$ $452.9$ $751.4$ $1204.3$ $550$ $479.7$ $0.818$ $0.999$ $232.4$ $446.0$ $739.7$ $1204.6$ </td <td>30</td> <td>274.0</td> <td>9.463</td> <td>3.076</td> <td>22.4</td> <td>243.0</td> <td>928.9</td> <td>1171.9</td>	30	274.0	9.463	3.076	22.4	243.0	928.9	1171.9
30 $29.7$ $0.802$ $2.83$ $32.4$ $20.1$ $91.9$ $119.0$ $117.0$ $60$ $307.3$ $58.36$ $2.415$ $37.4$ $270.1$ $904.7$ $1181.8$ $70$ $316.0$ $5.182$ $2.276$ $42.4$ $286.1$ $898.0$ $1184.1$ $80$ $323.9$ $4.662$ $2.159$ $47.4$ $294.3$ $891.9$ $1185.0$ $90$ $331.2$ $4.289$ $2.059$ $52.4$ $301.9$ $886.1$ $1188.0$ $100$ $837.9$ $3.888$ $1.972$ $57.4$ $308.9$ $880.7$ $1189.6$ $120$ $350.0$ $3.337$ $1.826$ $67.4$ $321.7$ $870.7$ $1192.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $160$ $370.6$ $2.402$ $1.613$ $87.4$ $343.4$ $853.0$ $1196.4$ $200$ $387.8$ $2.134$ $1.461$ $107.4$ $361.8$ $837.6$ $1199.3$ $250$ $406.0$ $1.742$ $1.320$ $132.4$ $381.5$ $820.2$ $1201.7$ $3300$ $421.8$ $1.472$ $1.213$ $157.4$ $398.6$ $800.6$ $1203.2$ $350$ $435.6$ $1.272$ $1.128$ $182.4$ $414.1$ $790.1$ $1204.6$ $450$ $459.5$ $0.998$ $0.999$ $232.4$ $440.9$ $763.7$ $1204.6$ $550$ $479.7$ $0.818$ $0.904$ $282.4$ $440.9$ $763.7$ $1204.6$ <td>40 E0</td> <td>200.7</td> <td>6.692</td> <td>2.797</td> <td>27.4</td> <td>233.9</td> <td>919.9</td> <td>1775.0</td>	40 E0	200.7	6.692	2.797	27.4	233.9	919.9	1775.0
00         30/3         3.586         2.413         37.4         27.11         994.7         1181.1           70         316.0         5182         2.276         42.4         286.1         898.0         1184.1           80         323.9         4.662         2.159         47.4         294.3         891.9         1186.2           90         331.2         4.289         2.059         52.4         301.9         886.1         1188.0           100         87.79         3.888         1.972         57.4         308.9         880.7         1189.6           120         350.0         3.337         1.826         67.4         321.7         870.7         1192.4           140         360.9         2.928         1.710         77.4         333.1         861.5         1194.6           160         370.6         2.602         1.613         87.4         343.4         853.0         1198.0           200         387.8         2.134         1.461         107.4         361.8         87.6         1198.0           250         406.0         1.742         1.320         132.4         381.5         820.2         1201.7           300         <	50	297.7	0.00Z	2.365	32.4	207.1	911.9	11/9.0
70         3100         3102         2270         424         2601         5030         1041           80         3329         4.662         2.159         47.4         294.3         891.9         1186.2           90         331.2         4.289         2.059         52.4         301.9         886.1         1188.0           100         837.9         3.888         1.972         57.4         308.9         880.7         1189.6           120         350.0         3.337         1.826         67.4         321.7         870.7         1192.4           140         360.9         2.928         1.710         77.4         333.1         861.5         1194.6           180         379.6         2.345         1.531         97.4         353.0         845.0         1198.0           200         387.8         2.134         1.461         107.4         361.8         837.6         1199.3           250         406.0         1.742         1.320         132.4         381.5         820.2         1201.7           300         421.8         1.472         1.213         157.4         398.6         804.6         1203.2           350         4	70	307.3	5.050	2.413	57.4 42.4	2/7.1	904.7	1101.0
50         32.5         4.02         2.1.5         4.7.4         24.3         59.1         1180.2           90         331.2         4.289         2.059         52.4         301.9         886.1         1188.0           100         837.9         3.888         1.972         57.4         308.9         880.7         1189.6           120         350.0         3.337         1.826         67.4         321.7         870.7         1192.4           140         360.9         2.928         1.710         77.4         333.1         861.5         1194.6           160         370.6         2.602         1.613         87.4         343.4         853.0         1196.4           180         379.6         2.345         1.531         97.4         353.0         845.0         1199.3           250         406.0         1.742         1.320         132.4         381.5         820.2         1201.7           300         421.8         1.472         1.128         182.4         414.1         790.1         1204.2           450         459.5         0.998         0.999         232.4         440.9         763.7         1204.6           450	80	222.0	4.662	2.270	42.4	200.1	801.0	1104.1
100 $337.2$ $120$ $32.4$ $301.7$ $301.7$ $300.1$ $1103.7$ $120$ $350.0$ $3.337$ $1.826$ $67.4$ $321.7$ $870.7$ $1192.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $160$ $370.6$ $2.602$ $1.613$ $87.4$ $434.4$ $853.0$ $1196.4$ $180$ $379.6$ $2.345$ $1.531$ $97.4$ $353.0$ $845.0$ $1198.0$ $200$ $387.8$ $2.134$ $1.461$ $107.4$ $361.8$ $837.6$ $1199.3$ $250$ $406.0$ $1.742$ $1.230$ $132.4$ $381.5$ $80.6$ $1203.2$ $250$ $405.0$ $1.742$ $1.213$ $157.4$ $398.6$ $804.6$ $1203.2$ $350$ $435.6$ $1.272$ $1.128$ $182.4$ $414.1$ $790.1$ $1204.2$ $400$ $448.1$ $1.120$ $1.068$ $207.4$ $428.0$ $776.6$ $1204.6$ $450$ $495.5$ $0.998$ $0.999$ $232.4$ $464.0$ $739.7$ $1204.6$ $500$ $470.0$ $0.900$ $0.948$ $257.4$ $452.9$ $751.4$ $1204.3$ $550$ $479.7$ $0.818$ $0.904$ $282.4$ $464.0$ $739.7$ $1203.7$ $600$ $488.8$ $0.749$ $0.865$ $307.4$ $474.6$ $78.7$ $1203.7$ $650$ $497.3$ $0.690$ $0.831$ $332.4$ $484.7$ $717.3$ $1202.0$ <t< td=""><td>90</td><td>331.2</td><td>4.002</td><td>2.159</td><td>52.4</td><td>301.9</td><td>886.1</td><td>1188.0</td></t<>	90	331.2	4.002	2.159	52.4	301.9	886.1	1188.0
100 $3017$ $3037$ $1.826$ $67.4$ $3017$ $3007$ $1192.4$ $140$ $360.9$ $2.928$ $1.710$ $77.4$ $333.1$ $861.5$ $1194.6$ $160$ $370.6$ $2.602$ $1.613$ $87.4$ $343.4$ $853.0$ $1196.4$ $180$ $379.6$ $2.345$ $1.531$ $97.4$ $353.0$ $845.0$ $1198.0$ $200$ $387.8$ $2.134$ $1.461$ $107.4$ $361.8$ $837.6$ $1199.3$ $250$ $406.0$ $1.742$ $1.200$ $132.4$ $381.5$ $820.2$ $1201.7$ $300$ $421.8$ $1.472$ $1.213$ $157.4$ $398.6$ $804.6$ $1203.2$ $350$ $435.6$ $1.272$ $1.128$ $182.4$ $414.1$ $790.1$ $1204.2$ $400$ $448.1$ $1.120$ $1.068$ $207.4$ $428.0$ $77.6$ $1204.6$ $450$ $459.5$ $0.990$ $0.999$ $232.4$ $440.9$ $75.1.4$ $1204.3$ $550$ $479.7$ $0.818$ $0.904$ $282.4$ $464.0$ $739.7$ $1203.7$ $600$ $488.8$ $0.749$ $0.865$ $307.4$ $474.6$ $728.4$ $1202.0$ $700$ $505.4$ $0.639$ $0.799$ $357.4$ $494.3$ $706.5$ $1200.8$ $800$ $520.3$ $0.548$ $0.699$ $457.4$ $520.0$ $666.0$ $1195.0$ $900$ $533.9$ $0.435$ $0.659$ $507.4$ $544.2$ $647.2$ $1191.4$ <td>100</td> <td>837.9</td> <td>3 888</td> <td>1 972</td> <td>57.4</td> <td>308.9</td> <td>880.7</td> <td>1189.6</td>	100	837.9	3 888	1 972	57.4	308.9	880.7	1189.6
140360.32007172007.431107.41121140360.92.9281.71077.4333.1861.51194.6160370.62.6021.61387.4343.4853.01196.4180379.62.3451.53197.4353.0845.01198.0200387.82.1341.461107.4361.8837.61199.3250406.01.7421.320132.4381.5820.21201.7300421.81.4721.213157.4398.6804.61203.2350435.61.2721.128182.4414.1790.11204.2400448.11.1201.068207.4428.0776.61204.6450459.50.9980.999232.4440.9763.71204.6550479.70.8180.904282.4464.0739.71203.7600488.80.7490.865307.4474.6728.41202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.749457.4512.3685.91198.2900533.90.4880.699457.4520.0665.01195.01000546.30.4350.659507.4544.2647.21191.4	120	350.0	3 337	1.826	67.4	321.7	870.7	1107.0
100         370.6         2.602         1.613         87.4         343.4         853.0         1196.4           180         379.6         2.345         1.531         97.4         353.0         845.0         1198.0           200         387.8         2.134         1.461         107.4         361.8         873.6         129.3           250         406.0         1.742         1.320         132.4         381.5         820.2         1201.7           300         421.8         1.472         1.213         157.4         398.6         804.6         1203.2           350         435.6         1.272         1.128         182.4         414.1         790.1         1204.2           400         448.1         1.120         1.068         207.4         428.0         776.6         1204.6           450         459.5         0.998         0.999         232.4         440.9         763.7         1204.3           550         470.0         0.900         0.948         257.4         464.0         739.7         1203.7           600         488.8         0.749         0.865         307.4         474.6         728.4         1203.0           655 <td>140</td> <td>360.9</td> <td>2 928</td> <td>1 710</td> <td>77.4</td> <td>333.1</td> <td>861.5</td> <td>1194.6</td>	140	360.9	2 928	1 710	77.4	333.1	861.5	1194.6
180379.62.3451.53197.4353.0845.01198.0200387.82.1341.461107.4361.8837.61199.3250406.01.7421.320132.4381.5820.21201.7300421.81.4721.213157.4398.6804.61203.2350435.61.2721.128182.4414.1790.11204.2400448.11.1201.068207.4428.0776.61204.6450459.50.9980.999232.4440.9763.71204.6500470.00.9000.948257.4452.9751.41204.3550479.70.8180.904282.4464.0739.71203.7600488.80.7490.865307.4474.6728.41203.2700505.40.6390.799357.4494.3706.51200.8800520.30.5540.659407.4512.3685.91198.2900533.90.4850.659457.452.0666.01195.01000546.30.4350.659507.4544.2647.21191.4	160	370.6	2.602	1.613	87.4	343.4	853.0	1196.4
200387.82.1341.461107.4361.8837.61199.3250406.01.7421.320132.4381.5820.21201.7300421.81.4721.213157.4398.6804.61203.2350435.61.2721.128182.4414.1790.11204.2400448.11.1201.068207.4428.0776.61204.6450459.50.9980.999232.4440.9763.71204.6500470.00.9000.948257.4452.9751.41203.7600488.80.7490.865307.4474.6728.41202.0650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.749457.4512.3685.91198.2900533.90.4880.699457.4520.0666.01195.01000546.30.4350.659507.4544.2647.21191.4	180	379.6	2.345	1.531	97.4	353.0	845.0	1198.0
250406.01.7421.320132.4381.5820.21201.7300421.81.4721.213157.4398.6804.61203.2350435.61.2721.128182.4414.1790.11204.2400448.11.1201.068207.4428.0776.61204.6450459.50.9980.999232.4440.9763.71204.6500470.00.9000.948257.4452.9751.41203.7600488.80.7490.865307.4474.6728.41203.0650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.745407.4512.3685.91198.2900533.90.4880.699457.4529.0665.01195.01000546.30.4350.659507.4544.2647.21191.4	200	387.8	2.134	1.461	107.4	361.8	837.6	1199.3
300421.81.4721.213157.4398.6804.61203.2350435.61.2721.128182.4414.1790.11204.2400448.11.1201.068207.4428.076.61204.6450459.50.9980.999232.4440.976.3.71204.6500470.00.9000.948257.4452.9751.41204.3550479.70.8180.904282.4464.0739.71203.7660488.80.7490.865307.4474.6728.41203.0650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.659407.4512.3685.91198.2900533.90.4880.699457.4542.0666.01195.01000546.30.4350.659507.4544.2647.21191.4	250	406.0	1.742	1.320	132.4	381.5	820.2	1201.7
350435.61.2721.128182.4414.1790.11204.2400448.11.1201.068207.4428.0776.61204.6450459.50.9980.999232.4440.976.371204.6500470.00.9000.948257.4452.9751.41203.7660479.70.8180.904282.4464.0739.71203.7660488.80.7490.865307.4474.6728.41203.0650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.659407.4512.3685.91198.2900533.90.4850.659507.4544.2647.21191.4	300	421.8	1.472	1.213	157.4	398.6	804.6	1203.2
400448.11.1201.068207.4428.0776.61204.6450459.50.9980.999232.4440.9763.71204.3500470.00.9000.948257.4452.9751.41204.3550479.70.8180.904282.4464.0739.71203.7600488.80.7490.865307.4474.6728.41202.0650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.745407.4512.3685.91198.2900533.90.4880.699457.4529.0666.01195.01000546.30.4350.659507.4544.2647.21191.4	350	435.6	1.272	1.128	182.4	414.1	790.1	1204.2
450459.50.9980.999232.4440.9763.71204.6500470.00.9000.948257.4452.9751.41204.3550479.70.8180.904282.4464.0739.71203.7600488.80.7490.865307.4474.6728.41203.0650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.659407.4512.3685.91198.2900533.90.4880.659507.4544.2647.21191.4	400	448.1	1.120	1.068	207.4	428.0	776.6	1204.6
500470.00.9000.948257.4452.9751.41204.3550479.70.8180.904282.4464.0739.71203.7600488.80.7490.865307.4474.6728.41203.0650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.745407.4512.3685.91198.2900533.90.4880.659507.4544.2647.21191.4	450	459.5	0.998	0.999	232.4	440.9	763.7	1204.6
550         479.7         0.818         0.904         282.4         464.0         739.7         1203.7           600         488.8         0.749         0.865         307.4         474.6         728.4         1203.0           650         497.3         0.690         0.831         332.4         484.7         717.3         1202.0           700         505.4         0.639         0.799         357.4         494.3         706.5         1200.8           800         520.3         0.554         0.745         407.4         512.3         685.9         1198.2           900         533.9         0.488         0.699         457.4         529.0         666.0         1195.0           1000         546.3         0.435         0.659         507.4         544.2         647.2         1191.4	500	470.0	0.900	0.948	257.4	452.9	751.4	1204.3
600488.80.7490.865307.4474.6728.41203.0650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.745407.4512.3685.91198.2900533.90.4880.699457.4529.0666.01195.01000546.30.4350.659507.4544.2647.21191.4	550	479.7	0.818	0.904	282.4	464.0	739.7	1203.7
650497.30.6900.831332.4484.7717.31202.0700505.40.6390.799357.4494.3706.51200.8800520.30.5540.745407.4512.3685.91198.2900533.90.4880.699457.4529.0666.01195.01000546.30.4350.659507.4544.2647.21191.4	600	488.8	0.749	0.865	307.4	474.6	728.4	1203.0
700         505.4         0.639         0.799         357.4         494.3         706.5         1200.8           800         520.3         0.554         0.745         407.4         512.3         685.9         1198.2           900         533.9         0.488         0.699         457.4         529.0         666.0         1195.0           1000         546.3         0.435         0.659         507.4         544.2         647.2         1191.4	650	497.3	0.690	0.831	332.4	484.7	717.3	1202.0
800520.30.5540.745407.4512.3685.91198.2900533.90.4880.699457.4529.0666.01195.01000546.30.4350.659507.4544.2647.21191.4	700	505.4	0.639	0.799	357.4	494.3	706.5	1200.8
900         533.9         0.488         0.699         457.4         529.0         666.0         1195.0           1000         546.3         0.435         0.659         507.4         544.2         647.2         1191.4	800	520.3	0.554	0.745	407.4	512.3	685.9	1198.2
1000         546.3         0.435         0.659         507.4         544.2         647.2         1191.4	900	533.9	0.488	0.699	457.4	529.0	666.0	1195.0
	1000	546.3	0.435	0.659	507.4	544.2	647.2	1191.4

# **STEAM FORMULAS**

# **ELECTRICAL FORMULAS**

# THREE PHASE, ALTERNATING CURRENT MOTORS

kW Actual (Motor Input) =  $\frac{1.73 \times I \times E \times PF}{1000}$ 

BHP (Motor Output) =  $\frac{1.73 \times I \times E \pm effM \times PF}{746}$ 

kWh (Motor Input) =  $\frac{BHP}{effM}$ 

# IF AMPS ARE UNKNOWN

Amps (hp known) =  $\frac{BHP \times 746}{1.73 \times E \times effM \times PF}$ Amps (kWh known) =  $\frac{kWh \times 1000}{1.73 \times E \times PF}$ Amps (kVa known) =  $\frac{kVa \times 1000}{1.73 \times E}$ 

# KILO VOLT AMPS

 $kVa = \frac{173 \times I \times E}{1000}$ 

# **MOTOR ELECTRICAL COSTS FOR YEAR**

Paid kWh Input Per Year =  $\frac{173 \times I \times E \times HR}{1000}$ 

kW Cost Per Year =  $\frac{173 \times I \times E \times HR \times \$kWh}{1000}$ 

Where

I = Current in amps kWh = Kilowatt hours E = Voltage bhp = Break horsepower PF = Power factor kVa = Kilovolt amps effM = Efficiency of motor FIR = Hour per year

# **REFRIGERATION AND AIR CONDITIONING**

### **TEMPERATURE-PRESSURE CHART**

### Shaded Figures = vacuum • Solid Figures = Pressure

°F	R-12	R-13	R-22	R-500	R-502	R-717 Ammonia	°F	R-12	R-13	R-22	R-500	R-502	R-717 Ammonia
-100	27.0	7.5	25.0	26.4	23.3	27.4	16	18.4	211.9	38.7	24.1	47.7	29.4
-95	26.4	10.9	24.1	25.7	22.1	26.8	18	19.7	218.8	40.9	25.7	50.1	31.4
-90	25.8	14.2	23.0	24.9	20.7	26.1	20	21.0	225.7	43.0	27.3	52.5	33.5
-85	25.0	18.2	21.7	24.0	19.0	25.3	22	22.4	233.0	45.3	28.9	54.9	35.7
-80	24.1	22.3	20.2	22.9	17.1	24.3	24	23.9	240.3	47.6	30.6	57.4	37.9
-75	23.0	27.1	18.5	21.7	15.0	23.2	26	25.4	247.8	49.9	32.4	60.0	40.2
-70	21.9	32.0	16.6	20.3	12.6	21.9	28	26.9	255.5	52.4	34.2	62.7	42.6
-65	20.5	37.7	14.4	18.8	10.0	20.4	30	28.5	263.2	54.9	36.0	65.4	45.0
-60	19.0	43.5	12.0	17.0	7.0	18.6	32	30.1	271.3	57.5	37.9	68.2	47.6
-55	17.3	50.0	9.2	15.0	3.6	16.6	34	31.7	279.5	60.1	39.9	71.1	50.2
-50	15.4	57.0	6.2	12.8	0.0	14.3	36	33.4	287.8	62.8	41.9	74.1	52.9
-45	13.3	64.6	2.7	10.4	2.1	11.7	38	35.2	296.3	65.6	43.9	77.1	55.7
-40	11.0	72.7	0.5	7.6	4.3	8.7	40	37.0	304.9	68.5	46.1	80.2	58.6
-35	8.4	81.5	2.6	4.6	6.7	5.4	45	41.7	327.5	76.0	51.6	88.3	66.3
-30	5.5	90.9	4.9	1.2	9.4	1.6	50	46.7	351.2	84.0	57.6	96.9	74.5
-28	4.3	94.9	5.9	0.1	10.5	0.0	55	52.0	376.1	92.6	63.9	106.0	83.4
-26	3.0	96.9	6.9	0.9	11.7	0.8	60	57.7	402.3	101.6	70.6	115.6	92.9
-24	1.6	103.0	7.9	1.6	13.0	1.7	65	63.8	429.8	111.2	77.8	125.8	103.1
-22	0.3	107.3	9.0	2.4	14.2	2.6	70	70.2	458.7	121.4	85.4	136.6	114.1
-20	0.6	111.7	10.2	3.2	15.5	3.6	75	77.0	489.0	132.2	93.5	148.0	125.8
-18	1.3	116.2	11.3	4.1	16.9	4.6	80	84.2	520.0	143.6	102.0	159.9	138.3
-16	2.1	120.8	12.5	5.0	18.3	5.6	85	91.6	_	155.7	111.0	172.5	151.7
-14	2.8	125.7	13.8	5.9	19.7	6.7	90	99.8	_	168.4	120.6	185.8	165.9
-12	3.7	130.5	15.1	6.8	21.2	7.9	95	106.3	_	181.8	130.6	199.7	181.1
-10	4.5	135.4	16.5	7.8	22.8	9.0	100	117.2	_	195.9	141.2	214.4	197.2
-8	5.4	140.5	17.9	8.8	24.4	10.3	105	126.6	_	210.8	152.4	229.7	214.2
-6	6.3	145.7	19.3	9.9	26.0	11.6	110	136.4		226.4	164.1	245.8	232.3
-4	7.2	151.1	20.8	11.0	27.7	12.9	115	146.8	_	242.7	176.5	262.6	251.5
-2	8.2	156.5	22.4	12.1	29.4	14.3	120	157.7	_	759.9	189.4	280.3	271.7
0	9.2	162.1	24.0	13.3	31.2	15.7	125	169.1	_	277.9	203.0	296.7	293.1
2	10.2	167.9	25.6	14.5	33.1	17.2	130	181.0	_	296.8	217.2	318.0	315.0
4	11.2	173.7	27.3	15.7	35.0	18.8	135	193.5	-	316.6	232.1	338.1	335.0
6	12.3	179.8	29.1	17.0	37.0	20.4	140	206.6	-	337.3	247.7	359.1	365.0
8	13.5	185.9	30.9	18.4	39.0	22.1	145	220.3	-	358.9	266.1	381.1	390.0
10	14.6	192.1	32.8	19.7	41.1	23.8	150	234.6	-	381.5	281.1	403.9	420.0
12	15.8	196.6	34.7	21.2	43.2	25.6	155	249.5	-	405.1	296.9	427.8	450.0
14	17.1	205.2	36.7	22.6	45.5	27.5	160	265.1	_	429.8	317.4	452.6	490.0

### **PROPERTIES OF SATURATED STEAM**

Centimeters	0.3937	Inches	Horse -power (boiler)	9.803	Kilowatts	Pounds/sq. inch	27.68	Inches of water
Centimeters	0.03280	Feet	Horse-power-hours	2547	Btu	Temp. (°C.) + 273	1	Abs. temp. (°C.)
Centimeters	0.01	Meters	Horse-power-hours	0.7457	Kilowatt-hours	Temp.(°C.) + 17.78	1.8	Temp. (°F.)
Centimeters	10	Millimeters	Inches	2,540	Centimeters	Temp.(°F.) + 460	1	Abs. temp. (°F.)
Centmtrs. of Merc.	0.01316	Atmosphere	Inches	25.4	Millimeters	Temp.(°F) – 32	5/9	Temp.(°C.)
Centimtrs. of merc.	0.4461	Feet of water	Inches	0.0254	Meters	Therm	100,000	Btu
Centimtrs. of merc.	136.0	Kgs./sq. meter	Inches	0.0833	Foot	Tons(long)	2240	Pounds
Centimtrs. of merc.	27.85	Lbs./sq. ft.	Inches of mercury	0.03342	Atmospheres	Ton, Refrigeration	12,000	Btu/hr.
Centimtrs. of merc.	0.1934	Lbs./sq.inch	Inches of mercury	1.133	Feet of water	Tons (short)	2000	Pounds
Cubic feet	$2.832 \times 10^{4}$	Cubic cms.	Inches of mercury	13.57	Inches of water	Watts	3.415	Btu
Cubic feet	1728	Cubic inches	Inches of mercury	70.73	Lbs./sq. ft.	Watts	0.05692	Btu/min.
Cubic feet	0.02832	Cubic meters	Inches of mercury	0.4912	Lbs./sq.inch	Watts	44.26	Foot-pounds/
min.								
Cubic feet	0.03704	Cubic yards	Inches of water	0.002458	Atmospheres	Watts	0.7376	Foot-pounds/
sec.								
Cubic feet	7.48052	Gallons U.S.	Inches of water	0.07355	In. of mercury	Watts	0.001341	Horse-power
Cubic feet/minute	472.0	Cubic cms.i'sec.	Inches of water	0.5781	Ounces/sq. inch	Watts	0.001	Kilowatts
Cubic feet/minute	0.1247	Gallons/sec.	Inches of water	5.202	Lbs./sq. toot	Watt-hours	3.415	Btu/hr.
Cubic foot water	62.4	Pounds @ 60°F	Inches of water	0.03613	Lbs./sq. inch	Watt-hours	2655	Foot-pounds
Feet	30.48	Centimeters	Kilowatts	56.92	Btu/min.	Watt-hours	0.001341	Horse-power
hrs.								
Feet	12	Inches	Kilowatts	1.341	Horse-power	Watt-hours	0.001	Kilowatt-hours
Feet	0.3048	Meters	Kilowatts	1000	Watts			
Feet	1/3	Yards	Kilowatt-hours	3415	Btu			

This page intentionally left blank

# Index

### A

Air Balancing general procedure, 3-11 procedure diagram, 12 proportionate balance, 10 test reports, 16-19 Air Balance Reports (See test reports, air) Air Distribution Systems, 107

### B

Blank forms, Appendix A, 187

### C

Carbon Dioxide levels, 89 Computerized Estimating features, 153 piping, 152 reports, 154 sheet metal, 152 Cooling Loads, 72-73, 100-101, 221

### D

Ductwork construction, 108 estimating, 108 types, 108

### E

Electrical Forms electrical consumption, 56-57, 211 electrical graphs, 60-61 electrical loads per system, 66-67, 207 electrical load recap, 68-69, 208 Energy Auditing average building energy performance, 48 diagram, 45 field surveys, in-depth, 42 procedures, 41-45 readings required, 46-47

sample audit, 49-50 walk through procedure, 41 Energy Auditing Forms, filled in building & system description, 52-54 chiller test report, 65 cooling load calculation, 72-73 cover sheet, 51 electrical consumption, 56-57 electrical graphs, 60-61 electrical loads per system, 66-67 electrical load recap, 68-69 energy profiles, 76-77 equipment, 58-59 fan test report, 62-63 heat loss calculation, 70-71 peak loads per area, 74-75 pump test report, 64 Energy Auditing Forms, blank (See contents, Appendix A) Energy Auditing, Residential energy consumption history, 78-79 purpose, 78 wall, roof, floor, window evaluations, 80-8 Energy Usage average US annual, 48 **Engineering Calculations** cooling load calculations, 100-101 heat loss calculations, 98-99 peak loads per area, 102-103 **Estimating Piping Costs** computerized piping estimating, 152-155 fittings and connections, 146 labor, 147 pipe and fitting materials, 145 piping systems, 145 principles and procedures, 144 requirements of piping estimator, 144-149 valves, specialties and equipment, 147 **Estimating Piping Forms** 

piping takeoff sheet, 150-151 Estimating Sheet Metal Costs computerized sheet metal estimating, 152-155 correction factors, 110 ductwork, 109 equipment, 110 markups, 111 principles and procedures, 106,112-114 procedure diagram, 115 requirements of a sheet metal estimator, 106-114 scope of a sheet metal estimate, 116 wage rates, 111 Estimating Sheet Metal Forms, Filled in bid check off sheet, 120-122 bid recap sheet, 132-133 bidding record, 134-135 job description and budget costs, 118-119 labor cost per hour, 136-137 markup calculation sheet, 138-139 per lb takeoff sheet, 142-143 per piece duct takeoff sheet, 140-141 quantity takeoff and extension, 126-127 quotations, 124-125 summary sheet, 128-129 telephone quotation, 130-131 Estimating Sheet Metal Forms, blank (See Contents, Appendix A) Equipment estimating, 110 fan report, 59 HVAC unit report, 59 pump report, 59 test report data, 11

### F

Fans inspecting, 5 readings, 8-9 test reports, 62-63

### Η

Heating Loads, 98-99 Humidity indoor air quality, 90-91 Hydronic Balancing preparing reports, 28-30 test reports, 32-39 Hydronic Balancing Reports (See Test Reports, Hydronic)

### Ι

Indoor Air Quality carbon dioxide, 89 specific causes, 86-87 instruments and testing, 89 formulas, 93-94 humidity, 90-91 outside air, 88-89 particulates, 91-93 problems, 85 testing and instruments, 89-90 Indoor Air Quality Forms filled in, 95-96 Indoor Air Quality Forms blank, 217-219 Instruments indoor air quality, 89-90

### L

Load Calculations cooling load form, 72-73, 100-101, 221 floor, 84 heat loss form 70-71, 98-99, 220 peak loads per area, 74-75, 102-103, 222 roof and ceiling, 82 wall, 81 windows and doors, 83

### Μ

Motors checking, 5

### 0

Outside Air testing and setting, 88-89

### Р

Particulate Contaminants, 91-93 aerosols, 93 allergens, 92 fibers, 92 fungal spores, 92

tobacco smoke, 92 Problem Solving and Decision Making case history, 168 causes, 176 evaluations, 183 information and planning, 182 notes, graphics, 184 objectives, 178 options, 180 procedures, 165 principles, 164 problem, becoming familiar, 173 technical management in, 157 Problem Solving Forms blank, 238-242 filled in, 157, 177, 179, 181, 182 Proportionate Balancing air balancing, 10-11 Pumps reports, 32-33

### R

Reports, Procedure for Preparing, 2 Residential Energy Auditing (See Energy Auditing, Residential)

### Т

Test Reports, Air, filled in cover sheet, 13 fan test reports, 16-17 general information, 15 outlet reports, 18-19 Pitot tube traverse, 22-25 system recap, 20-21 Test Reports, Air, blank (See contents, Appendix A) Test Reports, Hydronic, filled in chiller, 38-39 procedure, 28-30 pumps, 32-33 water balance, 34-37 Test Reports, Hydronic, blank (See contents, Appendix A)